926 resultados para Groundwater.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the selection of coaster brook trout (a life history variant of Salvelinus fontinalis,) spawning sites. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. Throughout this site, the river is relatively similar along its length with regard to stream channel and substrate features. A monitoring well system consisting of an array of 27 wells was installed to measure subsurface temperatures underneath the riverbed over a 13-month period. The monitoring well locations were separated into areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from 5 depths within each of the 27 monitoring wells. Temperatures within the substrate at the spawning area were generally cooler and less variable than river temperatures. Substrate temperatures in the non-spawning area were generally warmer, more variable, and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated velocities in the spawning and non-spawning areas confirmed that groundwater velocities in the spawning area were primarily in the upward direction, and were generally greater in magnitude than velocities in the non-spawning area. In the non-spawning area there was a greater occurrence of velocities in the downward direction, and velocity estimates were generally lesser in magnitude than in the spawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater influx to the river bed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater pumping from aquifers in hydraulic connection with nearby streams is known to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin is shown to be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time and streamflow depletion limits as well as streambed conductance. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite failed attempts at obtaining a potable water system, the village of El Caracol in Southern Honduras remains committed to improving access to water resources. To assist in this endeavor, an investigation of the hydrogeological characteristics of the local watershed was conducted. Daily precipitation was recorded to examine the relationship between precipitation and approximated river and spring discharges. A Thornthwaite Mather Water Balance Model was used to predict monthly discharges for comparison with observed values, and to infer the percentage of topographic watersheds contributing to the respective discharges. As aquifer porosity in this region is thought to be primarily secondary (i.e., fractures), field observed lineaments were compared with those interpreted from remote sensing imagery in an attempt to determine the usefulness of these interpretations in locating potential water sources for a future project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This lecture discusses monitoring activities of the Berkeley Pit for the past 31 years at the Montana Bureau of Mines and Geology in Butte, Montana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated nitrate in groundwater is common is agricultural areas where fertilizer has been added at high rates for decades. Within the Judith River Wastershed, high native soil fertility allowed for dryland wheat production without N fertilization until the 1980s, yet elevated nitrate levels were frequently observed in shallow aquifers. Dr. Stephanie Ewing presents results for soil, groundwater and surface water analyses from a hydrologically isolated strath terrace near Moccasin, MT. In context of this uniquely well constrained field setting, these observed data, along with land use history and a simple mass balance model, revel the long term development and perturbation of native soil fertility with cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Continental porphyry Cu‐Mo mine, located 2 km east of the famous Berkeley Pit lake of Butte, Montana, contains two small lakes that vary in size depending on mining activity. In contrast to the acidic Berkeley Pit lake, the Continental Pit waters have near-neutral pH and relatively low metal concentrations. The main reason is geological: whereas the Berkeley Pit mined highly‐altered granite rich in pyrite with no neutralizing potential, the Continental Pit is mining weakly‐altered granite with lower pyrite concentrations and up to 1‐2% hydrothermal calcite. The purpose of this study was to gather and interpret information that bears on the chemistry of surface water and groundwater in the active Continental Pit. Pre‐existing chemistry data from sampling of the Continental Pit were compiled from the Montana Bureau of Mines and Geology and Montana Department of Environmental Quality records. In addition, in March of 2013, new water samples were collected from the mine’s main dewatering well, the Sarsfield well, and a nearby acidic seep (Pavilion Seep) and analyzed for trace metals and several stable isotopes, including dD and d18O of water, d13C of dissolved inorganic carbon, and d34S of dissolved sulfate. In December 2013, several soil samples were collected from the shore of the frozen pit lake and surrounding area. The soil samples were analyzed using X‐ray diffraction to determine mineral content. Based on Visual Minteq modeling, water in the Continental Pit lake is near equilibrium with a number of carbonate, sulfate, and molybdate minerals, including calcite, dolomite, rhodochrosite (MnCO3), brochantite (CuSO4·3Cu(OH)2), malachite (Cu2CO3(OH)2), hydrozincite (Zn5(CO3)2(OH)6), gypsum, and powellite (CaMoO4). The fact that these minerals are close to equilibrium suggests that they are present on the weathered mine walls and/or in the sediment of the surface water ponds. X‐Ray Diffraction (XRD) analysis of the pond “beach” sample failed to show any discrete metal‐bearing phases. One of the soil samples collected higher in the mine, near an area of active weathering of chalcocite‐rich ore, contained over 50% chalcanthite (CuSO4·5H2O). This water‐soluble copper salt is easily dissolved in water, and is probably a major source of copper to the pond and underlying groundwater system. However, concentrations of copper in the latter are probably controlled by other, less‐soluble minerals, such as brochantite or malachite. Although the acidity of the Pavilion Seep is high (~ 11 meq/L), the flow is much less than the Sarsfield Well at the current time. Thus, the pH, major and minor element chemistry in the Continental Pit lakes are buffered by calcite and other carbonate minerals. For the Continental Pit waters to become acidic, the influx of acidic seepage (e.g., Pavilion Seep) would need to increase substantially over its present volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term water-level measurements provide a fundamental indicator of the health of Montana's groundwater resources. For more than 20 years the Groundwater Assessment Program has monitored groundwater levels across the state. This lecture reviews the State's groundwater use and shows how climate variability, groundwater development, and land-use has impacted different aquifers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (3H/3He), krypton-85 (85Kr), and argon-39 (39Ar), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75 of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50 of the water pumped by three deep production wells is older than 60 years. 3H/3He samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths ofWadi Abyadh andWadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer alongWadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the realization of Atom Trap Trace Analysis for39Ar and its first application to dating of groundwater samples. The presented system achieves an atmospheric39Ar count rate as high as 3.58 ± 0.10 atoms/h allowing for the determination of the39Ar concentration in less than a day. We demonstrate that the measured count rates are proportional to the39Ar concentration by intercomparison with Low-Level Counting results and by measurements on prepared argon samples with defined concentration. For a geophysical application, we degas three different groundwater samples and gas chromatographically extract the argon. The39Ar ages inferred from the count rates extend over the accessible dating range and are in agreement with the Low-Level Counting results as well as with complementary isotope data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two groundwater bodies, Grazer Feld and Leibnitzer Feld, with surface areas of 166 and 103 km2 respectively are characterised for the first time by measuring the combination of d18O/d2H, 3H/3He, 85Kr, CFC-11, CFC-12 and hydrochemistry in 34 monitoring wells in 2009/2010. The timescales of groundwater recharge have been characterised by 131 d18O measurements of well and surface water sampled on a seasonal basis. Most monitoring wells show a seasonal variation or indicate variable contributions of the main river Mur (0–30%, max. 70%) and/or other rivers having their recharge areas in higher altitudes. Combined d18O/d2H-measurements indicate that 65–75% of groundwater recharge in the unusual wet year of 2009 was from precipitation in the summer based on values from the Graz meteorological station. Monitoring wells downstream of gravel pit lakes show a clear evaporation trend. A boron–nitrate differentiation plot shows more frequent boron-rich water in the more urbanised Grazer Feld and more frequent nitrate-rich water in the more agricultural used Leibnitzer Feld indicating that a some of the nitrate load in the Grazer Feld comes from urban sewer water. Several lumped parameter models based on tritium input data from Graz and monthly data from the river Mur (Spielfeld) since 1977 yield a Mean Residence Time (MRT) for the Mur-water itself between 3 and 4 years in this area. Data from d18O, 3H/3He measurements at the Wagna lysimeter station supports the conclusion that 90% of the groundwaters in the Grazer Feld and 73% in the Leibnitzer Feld have MRTs of <5 years. Only in a few groundwaters were MRTs of 6–10 or 11–25 years as a result of either a long-distance water inflow in the basins or due to longer flow path in somewhat deeper wells (>20 m) with relative thicker unsaturated zones. The young MRT of groundwater from two monitoring wells in the Leibnitzer Feld was confirmed by 85Kr-measurements. Most CFC-11 and CFC-12 concentrations in the groundwater exceed the equilibration concentrations of modern concentrations in water and are therefore unsuitable for dating purposes. An enrichment factor up to 100 compared to atmospheric equilibrium concentrations and the obvious correlation of CFC-12 with SO4, Na, Cl and B in the ground waters of the Grazer Feld suggest that waste water in contact with CFC-containing material above and below ground is the source for the contamination. The dominance of very young groundwater (<5 years) indicates a recent origin of the contamination by nitrate and many other components observed in parts of the groundwater bodies. Rapid measures to reduce those sources are needed to mitigate against further deterioration of these waters.