954 resultados para Gram-negative aerobic bacteria (Physiology)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to increasing resistance and the limited arsenal of new antibiotics, especially against Gram-negative pathogens, carefully designed antibiotic regimens are obligatory for febrile neutropenic patients, along with effective infection control. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for initial empirical therapy in febrile neutropenic patients, based on: i) the local resistance epidemiology; and ii) the patient's risk factors for resistant bacteria and for a complicated clinical course. An 'escalation' approach, avoiding empirical carbapenems and combinations, should be employed in patients without particular risk factors. A 'de-escalation' approach, with initial broad-spectrum antibiotics or combinations, should be used only in those patients with: i) known prior colonization or infection with resistant pathogens; or ii) complicated presentation; or iii) in centers where resistant pathogens are prevalent at the onset of febrile neutropenia. In the latter case, infection control and antibiotic stewardship also need urgent review. Modification of the initial regimen at 72-96 h should be based on the patient's clinical course and the microbiological results. Discontinuation of antibiotics after 72 h or later should be considered in neutropenic patients with fever of unknown origin who are hemodynamically stable since presentation and afebrile for at least 48 h, irrespective of neutrophil count and expected duration of neutropenia. This strategy aims to minimize the collateral damage associated with antibiotic overuse, and the further selection of resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. are a major cause of infections in hospitalised patients. The aim of our study was to evaluate rates and trends of resistance to third-generation cephalosporins and fluoroquinolones in infected patients, the trends in use for these antimicrobials, and to assess the potential correlation between both trends. The database of national point prevalence study series of infections and antimicrobial use among patients hospitalised in Spain over the period from 1999 to 2010 was analysed. On average 265 hospitals and 60,000 patients were surveyed per year yielding a total of 19,801 E. coli, 3,004 K. pneumoniae and 3,205 Enterobacter isolates. During the twelve years period, we observed significant increases for the use of fluoroquinolones (5.8%-10.2%, p<0.001), but not for third-generation cephalosporins (6.4%-5.9%, p=NS). Resistance to third-generation cephalosporins increased significantly for E. coli (5%-15%, p<0.01) and for K. pneumoniae infections (4%-21%, p<0.01) but not for Enterobacter spp. (24%). Resistance to fluoroquinolones increased significantly for E. coli (16%30%, p<0.01), for K. pneumoniae (5%-22%, p<0.01), and for Enterobacter spp. (6%-15%, p<0.01). We found strong correlations between the rate of fluoroquinolone use and the resistance to fluoroquinolones, third-generation cephalosporins, or co-resistance to both, for E. coli (R=0.97, p<0.01, R=0.94, p<0.01, and R=0.96, p<0.01, respectively), and for K. pneumoniae (R=0.92, p<0.01, R=0.91, p<0.01, and R=0.92, p<0.01, respectively). No correlation could be found between the use of third-generation cephalosporins and resistance to any of the latter antimicrobials. No significant correlations could be found for Enterobacter spp.. Knowledge of the trends in antimicrobial resistance and use of antimicrobials in the hospitalised population at the national level can help to develop prevention strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is scarce data about the importance of phylogroups and virulence factors (VF) in bloodstream infections (BSI) caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBLEC). A prospective multicenter Spanish cohort including 191 cases of BSI due to ESBLEC was studied. Phylogroups and 25 VF genes were investigated by PCR. ESBLEC were classified into clusters according to their virulence profiles. The association of phylogropus, VF, and clusters with epidemiological features were studied using multivariate analysis. Overall, 57.6%, 26.7%, and 15.7% of isolates belonged to A/B1, D and B2 phylogroups, respectively. By multivariate analysis (adjusted OR [95% CI]), virulence cluster C2 was independently associated with urinary tract source (5.05 [0.96-25.48]); cluster C4 with sources other than urinary of biliary tract (2.89 [1.05-7.93]), and cluster C5 with BSI in non-predisposed patients (2.80 [0.99-7.93]). Isolates producing CTX-M-9 group ESBLs and from phylogroup D predominated among cluster C2 and C5, while CTX-M-1 group of ESBL and phylogroup B2 predominantes among C4 isolates. These results suggest that host factors and previous antimicrobial use were more important than phylogroup or specific VF in the occurrence of BSI due to ESBLEC. However, some associations between virulence clusters and some specific epidemiological features were found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Pseudomonas fluorescens CHAO is a soil bacterium which was isolated near Morens (Switzerland) and which protects plants from root-pathogenic fungi. This protection is due to extracellular secondary metabolites whose synthesis is regulated by the two-component system GacS/GacA in strain CHAO. Extracellular signals of bacterial origin activate this regulatory system. These signals are different from N-acyl-homoserine lactones, are extracted by dichloromethane and appear to have a low molecular weight. Preliminary evidence was obtained from a small molecule m/z 278 produced by strain CHAO. Similar signals capable of activating GacS/GacA-dependent regulation in strain CHAO were found in a large number of different Gram-negative bacteria. Once activated by signal(s), the sensor GacS is assumed to phosphorylate the response regulator GacA, which positively influences a regulatory cascade, resulting in the synthesis of secondary metabolites. This cascade includes three GacA-controlled small regulatory RNAs and two translational repressor proteins. The regulatory RNAs titrate the repressor proteins; this allows translation of target genes and the synthesis of exoenzymes and secondary metabolites such as antibiotics and hydrogen cyanide. A GFP-based sensor for signal detection was constructed in strain CHAO by fusing the gfp reporter gene to the rsmZ small RNA gene. CHAO mutants defective for signal production were isolated following transposon insertion mutagenesis. In one class of mutants obtained, the gacS gene was inactivated, indicating that GacS/GacA positively controls signal production. In a second class, the thiC gene required for thiamine (vitamin B1) biosynthesis was disrupted. Addition of excess (> 10E-6 M) thiamine to the medium restored signal production. By contrast, when the thiamine concentration was just sufficient to allow normal growth, no production of signal(s) was observed. The mechanism by which thiamine activates signal production remains to be elucidated. Résumé Pseudomonas fluorescens CHAO est une bactérie du sol, isolée près de Morens (Suisse), qui a la capacité de protéger les plantes contre des champignons pathogènes de la racine. Cette protection provient de métabolites secondaires excrétés par la bactérie, dont la synthèse est régulée par le système à deux composants GacS/GacA. Des signaux extracellulaires d'origine bactérienne activent ce système de régulation. Ces signaux, différents des N-acyl¬homosérines lactones, sont extraits par le dichlorométhane et semblent avoir une petite masse moléculaire. Une molécule (masse m/z 278) a été mise en évidence par des expériences préliminaires chez la souche CHAO. Des signaux similaires, capables d'activer la régulation dépendante de GacS/GacA chez la souche CHAO, ont été trouvés chez un grand nombre de bactéries à Gram négative. Une fois activé par le(s) signal(aux), le senseur GacS est supposé phosphoryler le régulateur de réponse GacA, qui influence positivement la cascade de régulation menant à la synthèse des métabolites secondaires. Cette cascade inclut trois petits ARNs régulateurs contrôlés par GacA et deux protéines répresseurs de la traduction. Les ARNs régulateurs titrent les protéines répresseurs, ce qui permet la traduction des gènes cibles et la synthèse d'exoenzymes et de métabolites secondaires tel les antibiotiques et le cyanure d'hydrogène. Un senseur basé sur la GFP pour la détection de signaux a été construit dans la souche CHAO en fusionnant le gène rapporteur gfp au gène de petit ARN rsmZ. Des mutants de CHAO déficients pour la production de signaux ont été isolés au moyen d'une mutagenèse par insertion de transposon. Chez une classe de mutants obtenus, le gène gacS a été inactivé, indiquant que GacS/GacA contrôle positivement la production de signaux. Dans une seconde classe, le gène thiC nécessaire à la biosynthèse de thiamine (vitamine B1) a été interrompu. L'addition en excès (> 10E-6 M) de thiamine au milieu restaure la production de signaux. A l'opposé, quand la concentration de thiamine est juste suffisante pour permettre une croissance normale, aucune production de signaux n'a été observée. Le mécanisme par lequel la thiamine active la production de signaux reste à élucider.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: Iron is an essential element for nearly all organisms but it is poorly available in most environments and not sufficient to support microbial growth. Bacteria have evolved a range of strategies to acquire this important metal, the most common of these being siderophore-mediated iron uptake. Siderophores are high-affinity iron chelators which are released to the extracellular environment where they complex iron and deliver it to the bacterial cell, via specific uptake systems. The Gram-negative bacterium Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, which both contribute to the virulence of this opportunistic human pathogen. The genes responsible for pyochelin-mediated iron uptake are grouped in the P. aeruginosa chromosome. The pyochelin biosynthetic genes are organized in two divergent operons, pchDCBA and pchEFGHI, which flank the regulatory gene pchR. The fptA gene, encoding the ferric pyochelin outer membrane receptor, occurs immediately downstream of the pchEFGHI genes. The biosynthesis of the siderophore and its receptor is subjected to dual regulation enabling P. aeruginosa to respond not only to the intracellular iron level but also to the presence of the siderophore in the extracellular environment. Negative regulation is mediated by the widespread Fur protein which employs ferrous iron as a corepressor and binds to a consensus sequence in the promoter region of iron-regulated genes. Positive regulation occurs during iron starvation and requires the AraC-type transcriptional regulator PchR. This regulator, together with pyochelin, induces the expression of pyochelin biosynthesis and uptake genes via a mechanism which was partly unraveled during this thesis. A 32-bp conserved sequence element (PchR-box) was identified in promoter regions of pyochelin-controlled genes. The PchR-box in the pchR-pchDCBA intergenic region was found to be essential for the induction of the pchDCBA operon and for the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin. PchR-box mutations which interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. These results show that pyochelin is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation implies that the siderophore can enter the cytoplasm. This conclusion was corroborated by analysing the importance of known and putative pyochelin uptake genes for pyochelin-dependent gene regulation. The pyochelin receptor gene fptA is followed by three genes, fptB, fptC, and fptX, which were shown here to be co-transcribed with fPtA. While fPtX encodes an inner membrane pen-I-lease, the functions of FptB and FptC are currently unknown. FptA and FptX, which are both required for pyochelin-mediated iron uptake, were found to be also needed for pyochelin-dependent gene regulation. FptB and FptC however, were not required and their role, if any, in the uptake of the PchR effector pyochelin remains elusive. RESUME Le fer est un élément essentiel pour la quasi-totalité des organismes, mais dans la plupart des environnements, il est difficilement accessible et insuffisant à la croissance microbienne. Les bactéries ont développé de multiples stratégies pour acquérir ce précieux métal, la plus commune étant l'acquisition au moyen de sidérophores. Les sidérophores sont des petites molécules dotées d'une forte affinité pour le fer qui, une fois relâchées dans l'environnement extracellulaire, vont complexer le fer et le délivrer à la cellule bactérienne par l'intermédiaire de systèmes d'acquisition spécifiques. La bactérie Gram-négative Pseudomonas aeruginosa produit deux sidérophores, la pyoverdine et la pyochéline, qui contribuent également à la virulence de ce pathogène opportuniste. Les gènes impliqués dans l'acquisition du fer à l'aide de la pyochéline sont regroupés sur t. le chromosome de P. aeruginosa. Les gènes de biosynthèse de la pyochéline sont organisés en deux opérons divergents, pchDCBA et pchEFGHI, qui flanquent le gène régulateur pchR. Le gène fptA, codant pour le récepteur de la pyochéline dans la membrane externe, est situé immédiatement en aval des gènes pchEFGHL La biosynthèse du sidérophore et de son récepteur est soumise à une double régulation permettant à P. aeruginosa de réagir non seulement à la quantité de fer intracellulaire, mais également à la présence du sidérophore dans le milieu extracellulaire. La répression se fait par l'intermédiaire de la protéine Fur, qui nécessite le fer ferreux comme co-répresseur et se lie à une séquence consensus dans la région promotrice des gènes régulés par le fer. L'induction se produit lorsque le fer est limitant, et requiert PchR, un régulateur transcriptionnel de la famille AraC. En présence de pyochéline, ce régulateur induit l'expression des gènes de biosynthèse et du récepteur de la pyochéline par l'intermédiaire d'un mécanisme partiellement résolu dans ce travail. Une séquence conservée (PchR-box) a été identifiée dans la région promotrice des gènes régulés par la pyochéline. La PchR-box située dans la région intergénique pchR-pchDCBA s'est révélée être importante pour l'induction de l'opéron pchDCBA et la répression du gène divergent pchR. PchR a été purifiée en tant que protéine de fusion avec une protéine liant le maltose (MBP). Des expériences de gel retard ont démontré la liaison spécifique de la protéine MBP-PchR sur la PchR-box en présence, mais non en absence de pyochéline. Les mutations de la PchR-box qui ont affecté la régulation pyochéline-dépendante in vivo, ont également eu un effet sur la liaison de la protéine in vitro. Ces résultats démontrent que la pyochéline est l'effecteur intracellulaire nécessaire à la régulation par PchR. Le fait que la pyochéline extracellulaire soit capable d'activer cette régulation implique que le sidérophore entre dans le cytoplasme. Cette conclusion a été corroborée par l'évaluation du rôle des gènes connus ou putatifs de l'incorporation du fer via la pyochéline sur la régulation pyochéline-dépendente. Le gène fPtA, codant pour le récepteur de la pyochéline, est suivi de trois gènes, fptB,fptC, et fptX, co-transcrits avec,ffitA. Si sffitX code pour une perméase de la membrane interne, la fonction de FptB et FptC reste obscure. FptA et FptX, nécessaires à l'acquisition du fer par l'intermédiaire de la pyochéline, se sont également révélés être requis pour la régulation pyochéline-dépendante des gènes pchDCBA, pchEFGHI et fptABCX. FptB et FptC n'ont quant à eux vraisemblablement pas de rôle majeur à jouer, si ce n'est aucun, dans l'incorporation de la pyochéline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two hundred twelve patients with colonization/infection due to amoxicillin-clavulanate (AMC)-resistant Escherichia coli were studied. OXA-1- and inhibitor-resistant TEM (IRT)-producing strains were associated with urinary tract infections, while OXA-1 producers and chromosomal AmpC hyperproducers were associated with bacteremic infections. AMC resistance in E. coli is a complex phenomenon with heterogeneous clinical implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P < 0.05, respectively]) in the HI versus LI groups, while amoxicillin-clavulanate maintained its efficacy (-1.01 log10 CFU/g [no statistically significant difference]). Regarding the Ec1062 strain, the antimicrobials showed lower efficacy in the HI than in the LI groups: -0.73, -1.89, and -1.62 log10 CFU/g (P < 0.05, for piperacillin-tazobactam, imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P < 0.05). These results suggest that amoxicillin-clavulanate could be an alternative to imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accuracy of the MicroScan WalkAway, BD Phoenix, and Vitek-2 systems for susceptibility testing of quinolones and aminoglycosides against 68 enterobacteria containing qnrB, qnrS, and/or aac(6 ')-Ib-cr was evaluated using reference microdilution. Overall, one very major error (0.09%), 6 major errors (0.52%), and 45 minor errors (3.89%) were noted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a prospective multicenter study in Spain to characterize the mechanisms of resistance to amoxicillin-clavulanate (AMC) in Escherichia coli. Up to 44 AMC-resistant E. coli isolates (MIC ≥ 32/16 μg/ml) were collected at each of the seven participant hospitals. Resistance mechanisms were characterized by PCR and sequencing. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and by multilocus sequence typing. Overall AMC resistance was 9.3%. The resistance mechanisms detected in the 257 AMC-resistant isolates were OXA-1 production (26.1%), hyperproduction of penicillinase (22.6%), production of plasmidic AmpC (19.5%), hyperproduction of chromosomic AmpC (18.3%), and production of inhibitor-resistant TEM (IRT) (17.5%). The IRTs identified were TEM-40 (33.3%), TEM-30 (28.9%), TEM-33 (11.1%), TEM-32 (4.4%), TEM-34 (4.4%), TEM-35 (2.2%), TEM-54 (2.2%), TEM-76 (2.2%), TEM-79 (2.2%), and the new TEM-185 (8.8%). By PFGE, a high degree of genetic diversity was observed although two well-defined clusters were detected in the OXA-1-producing isolates: the C1 cluster consisting of 19 phylogroup A/sequence type 88 [ST88] isolates and the C2 cluster consisting of 19 phylogroup B2/ST131 isolates (16 of them producing CTX-M-15). Each of the clusters was detected in six different hospitals. In total, 21.8% of the isolates were serotype O25b/phylogroup B2 (O25b/B2). AMC resistance in E. coli is widespread in Spain at the hospital and community levels. A high prevalence of OXA-1 was found. Although resistant isolates were genetically diverse, clonality was linked to OXA-1-producing isolates of the STs 88 and 131. Dissemination of IRTs was frequent, and the epidemic O25b/B2/ST131 clone carried many different mechanisms of AMC resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell division in Gram-negative bacteria involves the co-ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin-like protein FtsZ into a Z-ring at mid-cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z-ring constriction, inner- and outer-membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs-Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid-cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast-growth conditions. State-of-the-art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM-depleted cells compared with wild-type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acinetobacter baumannii, a strictly aerobic, non-fermentative, Gram-negative coccobacillary rod-shaped bacterium, is an opportunistic pathogen in humans. We recently isolated a multidrug-resistant A. baumannii strain KBN10P02143 from the pus sample drawn from a surgical patient in South Korea. We report the complete genome of this strain, which consists of 4,139,396 bp (G + C content, 39.08%) with 3,868 protein-coding genes, 73 tRNAs and six rRNA operons. Identification of the genes related to multidrug resistance from this genome and the discovery of a novel conjugative plasmid will increase our understanding of the pathogenicity associated with this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Finding therapeutic alternatives to carbapenems in infections caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) is imperative. Although fosfomycin was discovered more than 40 years ago, it was not investigated in accordance with current standards and so is not used in clinical practice except in desperate situations. It is one of the so-called neglected antibiotics of high potential interest for the future. METHODS AND ANALYSIS The main objective of this project is to demonstrate the clinical non-inferiority of intravenous fosfomycin with regard to meropenem for treating bacteraemic urinary tract infections (UTI) caused by ESBL-EC. This is a 'real practice' multicentre, open-label, phase III randomised controlled trial, designed to compare the clinical and microbiological efficacy, and safety of intravenous fosfomycin (4 g/6 h) and meropenem (1 g/8 h) as targeted therapy for this infection; a change to oral therapy is permitted after 5 days in both arms, in accordance with predetermined options. The study design follows the latest recommendations for designing trials investigating new options for multidrug-resistant bacteria. Secondary objectives include the study of fosfomycin concentrations in plasma and the impact of both drugs on intestinal colonisation by multidrug-resistant Gram-negative bacilli. ETHICS AND DISSEMINATION Ethical approval was obtained from the Andalusian Coordinating Institutional Review Board (IRB) for Biomedical Research (Referral Ethics Committee), which obtained approval from the local ethics committees at all participating sites in Spain (22 sites). Data will be presented at international conferences and published in peer-reviewed journals. DISCUSSION This project is proposed as an initial step in the investigation of an orphan antimicrobial of low cost with high potential as a therapeutic alternative in common infections such as UTI in selected patients. These results may have a major impact on the use of antibiotics and the development of new projects with this drug, whether as monotherapy or combination therapy. TRIAL REGISTRATION NUMBER NCT02142751. EudraCT no: 2013-002922-21. Protocol V.1.1 dated 14 March 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the adequacy of empirical therapy on outcome for patients with bloodstream infections (BSI) is key for determining whether adequate empirical coverage should be prioritized over other, more conservative approaches. Recent systematic reviews outlined the need for new studies in the field, using improved methodologies. We assessed the impact of inadequate empirical treatment on the mortality of patients with BSI in the present-day context, incorporating recent methodological recommendations. A prospective multicenter cohort including all BSI episodes in adult patients was performed in 15 hospitals in Andalucía, Spain, over a 2-month period in 2006 to 2007. The main outcome variables were 14- and 30-day mortality. Adjusted analyses were performed by multivariate analysis and propensity score-based matching. Eight hundred one episodes were included. Inadequate empirical therapy was administered in 199 (24.8%) episodes; mortality at days 14 and 30 was 18.55% and 22.6%, respectively. After controlling for age, Charlson index, Pitt score, neutropenia, source, etiology, and presentation with severe sepsis or shock, inadequate empirical treatment was associated with increased mortality at days 14 and 30 (odds ratios [ORs], 2.12 and 1.56; 95% confidence intervals [95% CI], 1.34 to 3.34 and 1.01 to 2.40, respectively). The adjusted ORs after a propensity score-based matched analysis were 3.03 and 1.70 (95% CI, 1.60 to 5.74 and 0.98 to 2.98, respectively). In conclusion, inadequate empirical therapy is independently associated with increased mortality in patients with BSI. Programs to improve the quality of empirical therapy in patients with suspicion of BSI and optimization of definitive therapy should be implemented.