853 resultados para Geometry -– Philosophy
Resumo:
Philosophers and economists write about collective action from distinct but related points of view. This paper aims to bridge these perspectives. Economists have been concerned with rationality in a strategic context. There, problems posed by “coordination games” seem to point to a form of rational action, “team thinking,” which is not individualistic. Philosophers’ analyses of collective intention, however, sometimes reduce collective action to a set of individually instrumental actions. They do not, therefore, capture the first person plural perspective characteristic of team thinking. Other analyses, problematically, depict intentions ranging over others’ actions. I offer an analysis of collective intention which avoids these problems. A collective intention aims only at causing an individual action, but its propositional content stipulates its mirroring in other minds.
Resumo:
J.L. Austin is regarded as having an especially acute ear for fine distinctions of meaning overlooked by other philosophers. Austin employs an informal experimental approach to gathering evidence in support of these fine distinctions in meaning, an approach that has become a standard technique for investigating meaning in both philosophy and linguistics. In this paper, we subject Austin's methods to formal experimental investigation. His methods produce mixed results: We find support for his most famous distinction, drawn on the basis of his `donkey stories', that `mistake' and `accident' apply to different cases, but not for some of his other attempts to distinguish the meaning of philosophically significant terms (such as `intentionally' and `deliberately'). We critically examine the methodology of informal experiments employed in ordinary language philosophy and much of contemporary philosophy of language and linguistics, and discuss the role that experimenter bias can play in influencing judgments about informal and formal linguistic experiments.
Resumo:
The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.
Resumo:
There is a widespread assumption that ordinary language philosophy was killed off sometime in the 1960s or 70s by a combination of Gricean pragmatics and the rapid development of systematic semantic theory. Contrary to that widespread assumption, however, contemporary versions of ordinary language philosophy are alive and flourishing, but going by various aliases—in particular (some versions of) "contextualism" and (some versions of) "experimental philosophy". And a growing group of contemporary philosophers are explicitly embracing the methods as well as the title of ordinary language philosophy and arguing that it has been unfairly maligned and was never decisively refuted. In this overview, I will outline the main projects and arguments employed by contemporary ordinary language philosophers, and make the case that updated versions of the arguments made by ordinary language philosophers in the middle of the twentieth century are attracting renewed attention.
Resumo:
Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
This chapter explores the extent to which philosophy of language can be considered an applied discipline. I consider, first, ways in which sub-sections of philosophy of language may be considered as applied in terms of their subject matter and/or the kinds of questions being addressed (e.g. philosophy of language which deals with derogatory or inflammatory uses of language, or the role of philosophy of language within feminist philosophy). Then, in the second part of the chapter, I turn to consider a more general (and perhaps more controversial) conception of philosophy of language as applied, which arises from the methodology adopted and the relationship of the discipline to empirical data.