944 resultados para Genetic transcription -- Regulation
Resumo:
Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.
Resumo:
The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.
Resumo:
We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression. © 2009 by The American Society of Hematology.
Resumo:
We have characterised the subgenomic RNAs of an Australian isolate of BYDV-PAV. Northern blot analyses of infected plants and protoplasts have shown that this isolate synthesises three subgenomic RNAs. Precise mapping of the transcription start sites of all three subgenomic RNAs and translational analyses of subgenomic RNA 2 and 3 have revealed a number of features. First, the transcription start site of subgenomic RNA 1 in this isolate differs markedly from the start site determined for an Illinois isolate of BYDV-PAV. Second, the start sites of subgenomic RNA 1 and 2 occur at a sequence that closely resembles the 5' end sequence of the genomic RNA (5'AGUGAAGA). Third, subgenomic RNA 2 appears to express ORF 6 of BYDV-PAV but the gene product is truncated due to the appearance of a new stop codon in the sequence. Last, subgenomic RNA 3, which is abundantly transcribed and encapsidated by the virus particle, appears to have no coding ability. We postulate that this novel subgenomic RNA has a regulatory function.
Resumo:
Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt-related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan-mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin-1 (Ext1) and heparanase, as well as alters the relative expression of N-linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O-linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan-related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)-related regulatory feed-back loop that controls osteoblast proliferation and execution of the osteogenic program.
Resumo:
In the six decades since the discovery of the double helix structure of DNA by Watson and Crick in 1953, developments in genetic science have transformed our understanding of human health and disease. These developments, along with those in other areas such as computer science, biotechnology, and nanotechnology, have opened exciting new possibilities for the future. In addition, the increasing trend for technologies to converge and build upon each other potentially increases the pace of change, constantly expanding the boundaries of the scientific frontier. At the same time, however, scientific advances are often accompanied by public unease over the potential for unforeseen, negative outcomes. For governments, these issues present significant challenges for effective regulation. This Article analyzes the challenges associated with crafting laws for rapidly changing science and technology. It considers whether we need to regulate, how best to regulate for converging technologies, and how best to ensure the continued relevance of laws in the face of change.
Resumo:
Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.
Resumo:
Background The genetic regulation of flower color has been widely studied, notably as a character used by Mendel and his predecessors in the study of inheritance in pea. Methodology/Principal Findings We used the genome sequence of model legumes, together with their known synteny to the pea genome to identify candidate genes for the A and A2 loci in pea. We then used a combination of genetic mapping, fast neutron mutant analysis, allelic diversity, transcript quantification and transient expression complementation studies to confirm the identity of the candidates. Conclusions/Significance We have identified the pea genes A and A2. A is the factor determining anthocyanin pigmentation in pea that was used by Gregor Mendel 150 years ago in his study of inheritance. The A gene encodes a bHLH transcription factor. The white flowered mutant allele most likely used by Mendel is a simple G to A transition in a splice donor site that leads to a mis-spliced mRNA with a premature stop codon, and we have identified a second rare mutant allele. The A2 gene encodes a WD40 protein that is part of an evolutionarily conserved regulatory complex.
Resumo:
Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus x domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach.
Resumo:
A cDNA encoding the chloroplast/mitochondrial form of glutathione reductase (GR:EC 1,6,4,2) from pea (Pisum sativum L.) was used to map a single GR locus, named GORI. In two domesticated genotypes of pea (cv, Birte and JI 399) it is likely that the GORI locus contains a single gene. However, in a semi-domesticated land race of pea sequences were detected but closely related sets of GR gene sequences were in JI 281 represent either a second intact gene or a partial or pseudogene copy. A GR gene was cloned from ev. Birte, sequenced and its structure analysed. No features of the transcription or structure of the gene suggested a mechanism for generating any more than one form of . From these data plus previously published biochemical evidence was suggested a second, distinct gene encoding for the cytosolic form of GR should be present in peas. The GORI-encoded GR mRNA can be detected in all main organs of the plant and no alternative spliced species was present which could perhaps account for the generation of multiple isoforms of GR. The mismatch between the number of charge-separable isoforms in pea and the proposed number suggests that different GR isoforms arise by some form of post-transnational modification.
Resumo:
Fruit softening in apple (Malus 3 domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A coldrelated gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the coldand ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration, suggesting the action of additional anthocyanin regulators. High-performance liquid chromatography (HPLC), liquid chromatography mass spectrometry (LCMS) and Affimetrix®-based microarrays were used to measure changes in anthocyanin, flavonoids, and gene expression in response to HTLL. HTLL treatment of control and 35S:PAP1 A. thaliana resulted in a reversible reduction in the concentrations of major anthocyanins despite ongoing over-expression of the PAP1 MYB transcription factor. Twenty-one anthocyanins including eight cis-coumaryl esters were identified by LCMS. The concentrations of nine anthocyanins were reduced and those of three were increased, consistent with a sequential process of anthocyanin degradation. Analysis of gene expression showed down-regulation of flavonol and anthocyanin biosynthesis and of transport-related genes within 24 h of HTLL treatment. No catabolic genes up-regulated by HTLL were found. Reductions in the concentrations of anthocyanins and down-regulation of the genes of anthocyanin biosynthesis were achieved by environmental manipulation, despite ongoing over-expression of PAP1. Quantitative PCR showed reduced expression of three genes (TT8, TTG1 and EGL3) of the PAP1 transcriptional complex, and increased expression of the potential transcriptional repressors AtMYB3, AtMYB6 and AtMYBL2 coincided with HTLL-induced down-regulation of anthocyanin biosynthesis. HTLL treatment offers a model system with which to explore anthocyanin catabolism and to discover novel genes involved in the environmental control of anthocyanins.