917 resultados para GRAVITATIONAL SEARCH ALGORITHM


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polynomial time algorithm (pruned correspondence search, PCS) with good average case performance for solving a wide class of geometric maximal matching problems, including the problem of recognizing 3D objects from a single 2D image, is presented. Efficient verification algorithms, based on a linear representation of location constraints, are given for the case of affine transformations among vector spaces and for the case of rigid 2D and 3D transformations with scale. Some preliminary experiments suggest that PCS is a practical algorithm. Its similarity to existing correspondence based algorithms means that a number of existing techniques for speedup can be incorporated into PCS to improve its performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel algorithm for learning in a class of stochastic Markov decision processes (MDPs) with continuous state and action spaces that trades speed for accuracy. A transform of the stochastic MDP into a deterministic one is presented which captures the essence of the original dynamics, in a sense made precise. In this transformed MDP, the calculation of values is greatly simplified. The online algorithm estimates the model of the transformed MDP and simultaneously does policy search against it. Bounds on the error of this approximation are proven, and experimental results in a bicycle riding domain are presented. The algorithm learns near optimal policies in orders of magnitude fewer interactions with the stochastic MDP, using less domain knowledge. All code used in the experiments is available on the project's web site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liu, Yonghuai. Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition, vol. 38, no. 10, pp. 1615-1631, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flikkema, E., & Bromley, S. T. (2004). Dedicated global optimization search for ground state silica nanoclusters: (SiO2)(N) (N=6-12). Journal of Physical Chemistry B, 108 (28), 9638-9645. RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal structure is skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefronatal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables such as time-to-contact. At a finer scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over- shoot the amounts needed for precise acts. Each context of action may require a different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive patterns of analog signals. From some parts of the cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine design to serve the lowest and highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between leveels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal video compression is a relatively new video compression method. Its attraction is due to the high compression ratio and the simple decompression algorithm. But its computational complexity is high and as a result parallel algorithms on high performance machines become one way out. In this study we partition the matching search, which occupies the majority of the work in a fractal video compression process, into small tasks and implement them in two distributed computing environments, one using DCOM and the other using .NET Remoting technology, based on a local area network consists of loosely coupled PCs. Experimental results show that the parallel algorithm is able to achieve a high speedup in these distributed environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.