983 resultados para GLUCOSE-OXIDASE ELECTRODE
Resumo:
OBJECTIVES To explore factors associated with postpartum glucose screening among women with Gestational Diabetes Mellitus (GDM). METHODS A retrospective study using linked records from women with GDM who gave birth at Cairns Hospital in Far North Queensland, Australia, from 1 January 2004 to 31 December 2010. RESULTS The rates of postpartum Oral Glucose Tolerance Test (OGTT) screening, while having increased significantly among both Indigenous* and non-Indigenous women from 2004 to 2010 (HR 1.15 per year, 95%CI 1.08-1.22, p<0.0001), remain low, particularly among Indigenous women (10% versus 27%, respectively at six months postpartum). Indigenous women in Cairns had a longer time to postpartum OGTT than Indigenous women in remote areas (HR 0.58, 0.38-0.71, p=0.01). Non-Indigenous women had a longer time to postpartum OGTT if they: were born in Australia (HR 0.76, 0.59-1.00, 0.05); were aged <25 years (HR 0.45, 0.23-0.89, p=0.02); had parity >5 (HR 0.33, 0.12-0.90, p=0.03); smoked (HR 0.48, 0.31-0.76, p=0.001); and did not breastfeed (HR 0.09, 0.01-0.64, p=0.02). CONCLUSIONS Postpartum diabetes screening rates following GDM in Far North Queensland are low, particularly among Indigenous women, with lower rates seen in the regional centre; and among non-Indigenous women with indicators of low socioeconomic status. IMPLICATIONS Strategies are urgently needed to improve postpartum diabetes screening after GDM that reach women most at risk.
Resumo:
A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.
Resumo:
Dyslipidaemia, a major risk factor of cardiovascular disease (CVD), is prevalent not only in diabetic patients but also in individuals with impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). The aims of this study were: 1) to investigate lipid levels in relation to glucose in European (Study I) and Asian (Study II) populations without a prior history of diabetes; 2) to study the ethnic difference in lipid profiles controlling for glucose levels (Study III); 3) to estimate the relative risk for cardiovascular mortality (Study IV) and morbidity (Study V) associated with dyslipidaemia in individuals with different glucose tolerance status. Data of 15 European cohorts with 19 476 subjects (I and III) and 13 Asian cohorts with 19 763 individuals (II and III) from 21 countries aged 25-89 years, without a prior history of diabetes at enrollment, representing Asian Indian, Chinese, European, Japanese and Mauritian Indian, were compared. The lipid-CVD relationship was studied in 14 European cohorts of 17 763 men and women which provided with follow-up data on vital status, with 871 CVD deaths occurred during the average 10-year follow-up (IV). The impact of dyslipidaemia on incidence of coronary heart disease (CHD) in persons with different glucose categories (V) was further evaluated in 6 European studies, with 9087 individuals free of CHD at baseline and 457 developed CHD during follow-up. Z-scores of each lipid component were used in the data analysis (I, II, IV and V) to reduce the differences in methodology between studies. Analyses of cardiovascular mortality and morbidity were performed using Cox proportional hazards regression analysis adjusting for potential confounding factors. Within each glucose category, fasting plasma glucose (FPG) levels were correlated with increasing levels of triglycerides (TG), total cholesterol (TC), TC to high-density lipoprotein (HDL) ratio and non-HDL cholesterol (non-HDL-C) (p<0.05 in most of the ethnic groups) and inversely associated with HDL-C (p<0.05 in some, but not all, of the populations). The association of lipids with 2-h plasma glucose (2hPG) followed a similar pattern as that for the FPG, except the stronger association of HDL-C with 2hPG. Compared with Central & Northern (C & N) Europeans, multivariable adjusted odd ratios (95% CIs) for having low HDL-C were 4.74 (4.19-5.37), 5.05 (3.88-6.56), 3.07 (2.15-4.40) and 2.37 (1.67-3.35) in Asian Indian men but 0.12 (0.09-0.16), 0.07 (0.04-0.13), 0.11 (0.07-0.20) and 0.16 (0.08-0.32) in Chinese men who had normoglycaemia, prediabetes, undiagnosed and diagnosed diabetes, respectively. Similar results were obtained for women. The prevalence of low HDL-C remained higher in Asian Indians than in others even in individuals with LDL-C < 3 mmol/l. Dyslipidaemia was associated with increased CVD mortality or CHD incidence in individuals with isolated fasting hyperglycaemia or IFG, but not in those with isolated post-load hyperglycaemia or IGT. In conclusion, hyperglycaemia is associated with adverse lipid profiles in Europeans and Asians without a prior history of diabetes. There are distinct patterns of lipid profiles associated with ethnicity regardless of the glucose levels, suggesting that ethnic-specific strategies and guidelines on risk assessment and prevention of CVD are required. Dyslipidaemia predicts CVD in either diabetic or non-diabetic individuals defined based on the fasting glucose criteria, but not on the 2-hour criteria. The findings may imply considering different management strategies in people with fasting or post-load hyperglycaemia.
Resumo:
Theory of developmental origins of adult health and disease proposes that experiences during critical periods of early development may have consequences on health throughout a lifespan. Thesis studies aimed to characterize associations between early growth and some components of the metabolic syndrome cluster. Participants belong to two epidemiological cohorts with data on birth measurements and, for the younger cohort, on serial recordings of weight and height during childhood. They were born as singletons between 1924-33 and 1934-44 in the Helsinki University Central Hospital, and 500 and 2003 of them, respectively, attended clinical studies at the age of 65-75 and 56-70 years, respectively. In the 65-75 year old men and women, the well-known inverse relationship between birth weight and systolic blood pressure (SBP) was confined to people who had established hypertension. Among them a 1-kg increase in birth weight was associated with a 6.4-mmHg (95% CI: 1.0 to 11.9) decrease in SBP. This relationship was further confined to people with the prevailing Pro12Pro polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPARγ2) gene. People with low birth weight were more likely to receive angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers (ACEI/ARB, p=0.03), and, again, this relationship was confined to the carriers of the Pro12Pro (p=0.01 for interaction). These results suggest that the inverse association between birth weight and systolic BP becomes focused in hypertensive people because pathological features of BP regulation, associated with slow fetal growth, become self-perpetuating in adult life. Insulin resistance of the Pro12Pro carriers with low birth weight may interact with the renin-angiotensin system leading to raised BP levels. Habitual physical activity protected men and women who were small at birth, and thus at increased risk for the development of type 2 diabetes, against glucose intolerance more strongly. Among subjects with birth weight ≤3000 g, the odds ratio (OR) for glucose intolerance was 5.2 (95% CI: 2.1 to 13) in those who exercised less than 3 times per week compared to regular exercisers; in those who scored their exercise light compared with moderate exercisers (defined as comparable to brisk walking) the OR was 3.5 (1.5 to 8.2). In the 56-70 year old men a 1 kg increase in birth weight corresponded to a 4.1 kg (95% CI: 3.1 to 5.1) and in women to a 2.9 kg (2.1 to 3.6) increase in adult lean mass. Rapid gain in body mass index (BMI), i.e. crossing from an original BMI percentile to a higher one, before the age of 2 years increased adult lean mass index (LMI, lean mass/height squared) without excess fat accumulation whereas rapid gain in BMI during later childhood, despite the concurrent rise in LMI, resulted in a relatively higher increase in adult body fat mass. These findings illustrate how genes, the environment and their interactions, early growth patterns, and adult lifestyle modify adult health risks which originate from early life.
Resumo:
Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.
Resumo:
Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein VV and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.
Resumo:
Working on the serotonin (5-hydroxytryptamine, 5-HT) 5-HT2B receptor since several years, we have read with high interest the review by Hertz et al. (2015). Previous studies from our group demonstrated that a direct injection in mouse raphe nucleus of the 5-HT2B agonist BW723C86 has the ability to increase extracellular levels of serotonin, which can be blocked by the selective 5-HT2B receptor antagonist RS127445 (Doly et al., 2008, 2009). We also reported that an acute injection of paroxetine 2 mg/kg in mice knocked out for the 5-HT2B receptor gene or in wild type mice injected with RS127445 (0.5 mg/kg) triggers a strong reduction in extracellular accumulation of 5-HT in hippocampus (Diaz et al., 2012). Following these observations, we showed that acute and chronic BW723C86 injection (3 mg/kg) can mimic the fluoxetine (3 mg/kg) and paroxetine (1 mg/kg) behavioral and biochemical antidepressant effects in mice (Diaz and Maroteaux, 2011; Diaz et al., 2012)...
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
Quantum effects are often of key importance for the function of biological systems at molecular level. Cellular respiration, where energy is extracted from the reduction of molecular oxygen to water, is no exception. In this work, the end station of the electron transport chain in mitochondria, cytochrome c oxidase, is investigated using quantum chemical methodology. Cytochrome c oxidase contains two haems, haem a and haem a3. Haem a3, with its copper companion, CuB, is involved in the final reduction of oxygen into water. This binuclear centre receives the necessary electrons from haem a. Haem a, in turn, receives its electrons from a copper ion pair in the vicinity, called CuA. Density functional theory (DFT) has been used to clarify the charge and spin distributions of haem a, as well as changes in these during redox activity. Upon reduction, the added electron is shown to be evenly distributed over the entire haem structure, important for the accommodation of the prosthetic group within the protein. At the same time, the spin distribution of the open-shell oxidised state is more localised to the central iron. The exact spin density distribution has been disputed in the literature, however, different experiments indicating different distributions of the unpaired electron. The apparent contradiction is shown to be due to the false assumption of a unit amount of unpaired electron density; in fact, the oxidised state has about 1.3 unpaired electrons. The validity of the DFT results have been corroborated by wave function based coupled cluster calculations. Point charges, for use in classical force field based simulations, have been parameterised for the four metal centres, using a newly developed methodology. In the procedure, the subsystem for which point charges are to be obtained, is surrounded by an outer region, with the purpose of stabilising the inner region, both electronically and structurally. Finally, the possibility of vibrational promotion of the electron transfer step between haem a and a3 has been investigated. Calculating the full vibrational spectra, at DFT level, of a combined model of the two haems, revealed several normal modes that do shift electron density between the haems. The magnitude of the shift was found to be moderate, at most. The proposed mechanism could have an assisting role in the electron transfer, which still seems to be dominated by electron tunnelling.
Resumo:
It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.
Resumo:
Treatment of N. crassa cultures with cycloheximide followed by washing and incubation in drug-free fresh medium results in a rapid decline in cytochrome oxidase activity. This is associated with the degradation of higher molecular weight subunits of cytochrome oxidase under these conditions. The protease activity associated with the mitochondrial preparation decreases during cycloheximide treatment and rapidly returns to normal levels on subsequent washing and transfer to drug-free fresh medium. It is suggested that the steady-state level of cytochrome oxidase is governed by a rapidly turning over cytoplasmically synthesized mitochondrial protease.
Resumo:
The role of heme in the synthesis of cytochrome c oxidase has been investigated in the mold Neurospora crassa. Iron-deficient cultures of the mold have low levels of cytochrome oxidase and delta-aminolevulinate dehydratase, the latter being the rate-limiting enzyme of the heme-biosynthetic pathway in this organism. Addition of iron to the iron-deficient cultures results in an immediate increase in the levels of delta-aminolevulinate dehydratase followed by an increase in the rate of heme synthesis and cytochrome oxidase levels. The rate of precursor labeling of the mitochondrial subunits of cytochrome oxidase is decreased preferentially under conditions of iron deficiency and addition of iron corrects this picture. Exogenous hemin addition which prevents iron-mediated induction of delta-aminolevulinate dehydratase also inhibits the increase in the activity of cytochrome oxidase and the enhanced precursor labeling of the mitochondrial subunits of cytochrome oxidase. Protein synthesis on mitoribosomes measured in vivo and in vitro is decreased under conditions of heme deficiency. Hemin addition in vitro to mitochondrial lysates prepared from heme-deficient mycelia restores a near normal rate of protein synthesis. It is concluded that heme is required for the optimal rate of translation on mitoribosomes.
Resumo:
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.