377 resultados para GERMLINE KRAS
Resumo:
Lymphocyte development requires the assembly of diversified antigen receptor complexes generated by the genetically programmed V(D)J recombination event. Because germline DNA is cut, introducing potentially dangerous double-stranded breaks (DSBs) and rearranged prior to repair, its activity is limited to the non-cycling stages of the cell cycle, G0/G1. The potential involvement of a key mediator, Ataxia Telangiectasia Mutated or ATM, in the DNA damage response (DDR) and cell cycle checkpoints has been implicated in recombination, but its role is not fully understood. Thymic lymphomas from ATM deficient mice contain clonal chromosomal translocations involving the T-cell antigen receptor (TCR). A previous report found ATM and its downstream target p53 associated with V(D)J intermediates, suggesting the DDR senses recombination. In this study, we sought to understand the role of ATM in V(D)J recombination. Developing thymocytes from ATM deficient mice were analyzed according to the cell cycle to detect V(D)J intermediates. Examination of all TCR loci in the non-cycling (G0/G1) and cycling (S/G2/M) fractions revealed the persistence of intermediates in ATM deficient thymocytes, contrary to the wild-type in which intermediates are found only during G0/G1. Further analysis found no defect in end-joining of intermediates, nor were they detected in developed T-cells. Based upon the presence of persisting intermediates, the recombination initiating nuclease Rag-2 was examined; strict regulation limits it to G 0/G1. Rag-2 regulation was not affected by an ATM deficiency as Rag-2 expression remained contained within G0/G 1, indicating recombination is not continuous. To determine if an ATM deficiency affects recognition of V(D)J breaks, sites of recombination identified by a TCR locus or Rag expression were analyzed according to co-localization with a DDR factor phosphorylated immediately after DNA damage, phosphorylated H2AX (γH2AX). No differences in co-localization were found between the wild-type and ATM deficiency, demonstrating ATM deficient lymphocytes retain the ability to recognize DSBs. Together, these results suggest ATM is necessary in the cell cycle regulation of recombination but not essential for the identification of V(D)J breaks. ATM ensures the containment of intermediates within G0/G1 and maintains genomic stability of developing lymphocytes, emphasizing its fundamental role in preventing tumorigenesis.^
Resumo:
Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^
Resumo:
Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.
Resumo:
BACKGROUND: Mismatch repair deficient (MMRD) colorectal (CRC) or endometrial (EC) cancers in the absence of MLH1 promoter hypermethylation and BRAF mutations are suggestive of Lynch syndrome (LS). Positive germline genetic test results confirm LS. It is unclear if individuals with MMRD tumors but no identified germline mutation or sporadic cause (MMRD+/germline-) have LS. HYPOTHESIS: Since LS is hereditary, individuals with LS should have a stronger family history of LS-related cancers than individuals with sporadic tumors. We hypothesized that MMRD+/germline- CRC and/or EC patients would have less suggestive family histories than LS CRC and/or EC patients. METHODS: 253 individuals with an MMRD CRC or EC who underwent genetic counseling at one institution were included in analysis in 1 of 4 groups: LS, MMRD+/germline-, MMRD+/VUS, sporadic MSI-H (MMRD tumor with MLH1 promoter hypermethylation or BRAF mutation). Family histories were analyzed utilizing MMRpro and PREMM1,2,6. Kruskal-Wallis tests were used to compare family history scores. Logistic regression was used to determine what factors were predictive of LS. RESULTS: MMRD+/germline- individuals had significantly lower median family history scores (PREMM1,2,6=7.3, MMRpro=8.1) than LS individuals (PREMM1,2,6=26.1, MMRpro=89.8, p CONCLUSION: MMRD+/germline- individuals have less suggestive family histories of LS than individuals with LS, but more suggestive family histories than sporadic MSI-H individuals. CRC and/or EC patients with abnormal tumor studies are more likely to have a germline LS mutation if they have a family history suggestive of hereditary cancer. These results imply that the MMRD+/germline- group may not all have LS. This finding highlights the need to determine other somatic, epigenetic or germline causes of MMRD tumors so that these patients and their families can be accurately counseled regarding screening and management.
Resumo:
Li- Fraumeni Syndrome (LFS) is a rare autosomal dominant hereditary cancer syndrome caused by mutations in the TP53 gene that predisposes individuals to a wide variety of cancers, including breast cancer, soft tissue sarcomas, osteosarcomas, brain tumors, and adrenocortical carcinomas. Individuals found to carry germline mutations in TP53 have a 90% lifetime cancer risk, with a 20% chance to develop cancer under the age of 20. Despite the significant risk of childhood cancer, predictive testing for unaffected minors at risk for LFS historically has not been recommended, largely due to the lack of available and effective screening for the types of cancers involved. A recently developed screening protocol suggests an advantage to identifying and screening children at risk for LFS and we therefore hypothesized that this alongside with the availability of new screening modalities may substantiate a shift in recommendations for predictive genetic testing in minors at risk for LFS. We aimed to describe current screening recommendations that genetic counselors provide to this population as well as explore factors that may have influenced genetic counselors attitude and practice in regards to this issue. An online survey was emailed to members of the National Society of Genetic Counselors (NSGC) and the Canadian Association of Genetic Counsellors (CAGC). Of an estimated 1000 eligible participants, 172 completed surveys that were analyzed. Genetic counselors in this study were more likely to support predictive genetic testing for this population as the minor aged (p
Resumo:
One of the most elegant and tightly regulated mechanisms for control of gene expression is alternative pre-mRNA splicing. Despite the importance of regulated splicing in a variety of biological processes relatively little is understood about the mechanisms by which specific alternative splice choices are made and regulated. The transformer-2 (tra-2) gene encodes a splicing regulator that controls the use of alternative splicing pathways in the sex determination cascade of D. melanogaster and is particularly interesting because it directs the splicing of several distinct pre-mRNAs in different manners. The tra-2 protein positively regulates the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs. Additionally tra-2 controls exuperantia (exu) by directing the choices between splicing and cleavage/polyadenylation and autoregulates the tra-2 pre-mRNA processing by repressing the removal of a specific intron (called M1). The goal of this study is to identify the molecular mechanisms by which TRA-2 protein affects the alternative splicing of pre-mRNA deriving from the tra-2 gene itself.^ The autoregulation of M1 splicing plays a key role in regulation of the relative levels of two functionally distinct TRA-2 protein isoforms expressed in the male germline. We have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative pre-mRNAs produced in D. virilis testes suggests that the germline-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster.^ To identify elements necessary for regulation of tra-2 M1 splicing, we mutagenized evolutionarily conserved sequences within the tra-2 M1 intron and flanking exons. Constructs containing these mutations were used to generate transgenic fly lines that have been tested for their ability to carry out autoregulation. These transgenic fly experiments elucidated several elements that are necessary for setting up a context under which tissue-specific regulation of M1 splicing can occur. These elements include a suboptimal 3$\sp\prime$ splice site, an element that has been conserved between D. virilis and D. melanogaster, and an element that resembles the 3$\sp\prime$ portion of a dsx repeat and other splicing enhancers.^ Although important contextual features of the tra-2 M1 intron have been delineated in the transgenic fly experiments, the specific RNA sequences that interact directly with the TRA-2 protein were not identified. Using Drosophila nuclear extracts from Schneider cells, we have shown that recombinant TRA-2 protein represses M1 splicing in vitro. UV crosslinking analysis suggests that the TRA-2 protein binds to several different sites within and near the M1 intron. ^
Resumo:
Mutations in the p53 tumor suppressor gene are found in over 50% of human tumors and in the germline of Li-Fraumeni syndrome families. About 80% of these mutations are missense in nature. In order to study how p53 missense mutations affect tumorigenesis in vivo, we focused on the murine p53 arg-to-his mutation at amino acid 172, which corresponds to the human hot spot mutation at amino acid 175. The double replacement procedure was employed to introduce the p53 R172H mutation into the p53 locus of ES cells and mice were generated. An additional 1bp deletion in the intron 2 splice acceptor site was detected in the same allele in mice. We named this allele p53R172HΔg. This allele makes a small amount of full length p53 mutant protein. ^ Spontaneous tumor formation and survival were studied in these mice. Mice heterozygous for the p53R172HΔg allele showed 50% survival at 17 months of age, similar to the p53+/− mice. Moreover, the p53R172HΔg/+ mice showed a distinct tumor spectrum: 55% sarcomas, including osteosarcoms, fibrosarcomas and angiosarcomas; 27% carcinomas, including lung adenocarcinomas, squamous cell carcinomas, hepatocellular carcinomas and islet cell carcinomas; and 18% lymphomas. Compared to the p53+/− mice, there was a clear increase in the frequency of carcinoma development and a decrease in lymphoma incidence. Among the sarcomas that developed, fibrosarcomas in the skin were also more frequently observed. More importantly, osteosarcomas and carinomas that developed in the p53R172HΔg/+ mice metastasized at very high frequency (64% and 67%, respectively) compared with less than 10% in the p53+/− mice. The metastatic lesions were usually found in lung and liver, and less frequently in other tissues. The altered tumor spectrum in the mice and increased metastatic potential of the tumors suggested that the p53R172H mutation represents a gain-of-function. ^ Mouse embryonic fibroblasts (MEFs) from the mice homozygous and heterozygous for the p53R172HΔg allele were studied for growth characteristics, immortalization potential and genomic instability. All of the p53R172HΔg /+ MEF lines are immortalized under a 3T3 protocol while under the same protocol p53+/− MEFs are not immortalized. Karyotype analysis showed a persistent appearance of chromosome end-to-end fusion in the MEFs both homozygous and heterozygous for the p53R172HΔg allele. These observations suggest that increased genomic instability in the cells may cause the altered tumor phenotypes. ^
Resumo:
p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^
Resumo:
Microsatellite instability (MSI) is a hallmark of the mutator phenotype associated with Hereditary Non-Polyposis Colon Cancer (HNPCC). The MSI-High (MSI-H) HNPCC population has been well characterized, but the microsatellite low and stable (MSI-L/MSS) HNPCC population is much less understood. We hypothesize there are significant levels of MSI in HNPCC DNA classified as MSI-L/MSS, but no single variant allele makes up a sufficient population in the tumor DNA to be detected by standard analysis. Finding variants would suggest there is a mutator phenotype for the MSI-L/MSS HNPCC population that is distinct from the MSI-H HNPCC populations. This study quantified and compared MSI in HNPCC patients previously shown to be MSI-H, MSI-L/MSS and an MSI-H older, sporadic colorectal cancer patient. Small-pool Polymerase Chain Reactions (SP-PCRs) were conducted where the DNAs from each sample and controls are diluted into multiple pools, each containing approximately single genome equivalents. At least 100 alleles/sample were studied at six microsatellite loci. Mutant fragments were identified, quantified, and compared using Poisson statistics. Most of the variants were small deletions or insertions, with more mutants being deletions, as has been previously described in yeast and transgenic mice. SP-PCR, where most of the pools contained only 3 or less fragments, enabled identification of variants too infrequent to be detected by large pool PCR. Mutant fragments in positive control MSI-H tumor samples ranged from 0.26 to 0.68 in at least 4 of the 6 loci tested and were consistent with their MSI-H status. In the so called MSS tumors and constitutive tissues (normal colon tissue, and PBLs) of all the HNPCC patients, low, but significant levels of MSI were seen in at least two of the loci studied. This phenomenon was not seen in the sporadic MSI constitutive tissues nor the normal controls and suggests haploinsufficiency, gain-of-function, or a dominant/negative basis of the instability in HNPCC patients carrying germline mutations for tumor suppressor genes. A different frequency and spectrum of mutant fragments suggests a different genetic basis (other than a major mutation in MLH1 or MSH2) for disease in MSI-L and MSS HNPCC patients. ^
Resumo:
Missense mutations in the p53 tumor-suppressor gene are the most common alterations of p53 in somatic tumors and in patients with Li-Fraumeni syndrome. p53 missense mutations occur in the DNA binding region and disrupt the ability of p53 to activate transcription. In vitro studies have shown that some p53 missense mutants have a gain-of-function or dominant-negative activity. ^ The p53 175 Arg-to-His (p53 R175H) mutation in humans has been shown to have dominant-negative and gain-of-function properties in vitro. This mutation is observed in the germline of individuals with Li-Fraumeni syndrome. To accurately model Li-Fraumeni syndrome and to examine the mechanistic nature of a gain-of-function missense mutation on in vivo tumorigenesis, we generated and characterized a mouse with the corresponding mutation, p53 R172H. p53R172H homozygous and heterozygous mice developed similar tumor spectra and survival curves as p53 −/− and p53+/− mice, respectively. However, tumors in p53+/R172H mice metastasized to various organs with high frequency, suggesting a gain-of-function phenotype by p53R172H in vivo. Mouse embryonic fibroblasts (MEFs) from p53R172H mice also showed gain-of-function phenotypes in cell proliferation, DNA synthesis, and transformation potential, while cells from p53+/− and p53−/− mice did not. ^ To mechanistically characterize the gain-of-function phenotype of the p53R172H mutant, the role of p53 family members, p63 and p73, was analyzed. Disruption of p63 and p73 by siRNAs in p53 −/− MEFs increased transformation potential and reinitiated DNA synthesis to levels observed in p53R172H/R172H cells. Additionally, p63 and p73 were bound and functionally inactivated by p53R172H in metastatic p53 R172H tumor-derived cell lines, indicating a role for the p53 family members in the gain-of-function phenotype. This study provides in vivo evidence for the gain-of-function effect of p53 missense mutations and more accurately models the Li-Fraumeni syndrome. ^
Resumo:
The investigation of the species composition and ecology of diatoms of modern bottom sediments in water bodies of arctic polygonal tundra in three subregions of North Yakutiya has been carried out. As a result, 161 taxons of diatoms were determined; the determinant role of the depth, conductivity, pH of the water, and geographic latitude in their distribution was confirmed, and two complexes of species with respect to the leading abiotic factors were distinguished. The diatoms of the first complex prefer shallow water bodies of high latitudes with neutral and slightly alkaline water and relatively high conductivity. The second complex is confined to the water bodies of lower latitudes with small conductivity, as well as neutral and slightly acidic water.