949 resultados para GENETIC RADIATION EFFECTS
Resumo:
Effects of solar ultraviolet radiation (UVR) on Spirulina platensis were studied by investigating its photochemical efficiency, photosynthetic pigments and biomass production while exposed to full spectrum solar radiation or depleted of UVR for understanding how and to what extent UVR influences its photosynthetic physiology and production. It was found that UVR brought about an extra inhibition of photochemical efficiency by 26%-30%. The greatest inhibition of photochemical efficiency in S. platensis was observed at noontime, and then recovered to some extent in late afternoon no matter which treatment they were exposed to. The contents of chlorophyll a, phycocyanin and carotenoids increased during initial stage of the exposure, but decreased with elongated exposure. UVR decreased the biomass yield by about 6%. It indicated that filtering out UVR of solar radiation would raise the productivity of S. platensis, which is an important factor that should be considered in the production.
Resumo:
In an attempt to explore the effects of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical
Resumo:
Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.
Resumo:
The delivery of spatially modulated radiation fields has been shown to impact on in vitro cell survival responses. To study the effect of modulated fields on cell survival, dose response curves were determined for human DU-145 prostate, T98G glioma tumour cells and normal primary AGO-1552 fibroblast cells exposed to modulated and non-modulated field configurations delivered using a 6 MV Linac with multi-leaf collimator. When exposed to uniform fields delivered as a non-modulated or modulated configuration, no significant differences in survival were observed with the exception of DU-145 cells at a dose of 8 Gy (p = 0.024). Survival responses were determined for exposure to non-uniform-modulated beams in DU-145 and T98G and showed no deviation from the survival response observed following uniform non-modulated exposures. The results of these experiments indicate no major deviation in response to modulated fields compared to uniform exposures.