967 resultados para GENE-TRANSFER AGENTS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genomic islands are DNA elements acquired by horizontal gene transfer that are common to a large number of bacterial genomes, which can contribute specific adaptive functions, e.g. virulence, metabolic capacities or antibiotic resistances. Some genomic islands are still self-transferable and display an intricate life-style, reminiscent of both bacteriophages and conjugative plasmids. Here we studied the dynamical process of genomic island excision and intracellular reintegration using the integrative and conjugative element ICEclc from Pseudomonas knackmussii B13 as model. By using self-transfer of ICEclc from strain B13 to Pseudomonas putida and Cupriavidus necator as recipients, we show that ICEclc can target a number of different tRNA(Gly) genes in a bacterial genome, but only those which carry the GCC anticodon. Two conditional traps were designed for ICEclc based on the attR sequence, and we could show that ICEclc will insert with different frequencies in such traps producing brightly fluorescent cells. Starting from clonal primary transconjugants we demonstrate that ICEclc is excising and reintegrating at detectable frequencies, even in the absence of recipient. Recombination site analysis provided evidence to explain the characteristics of a larger number of genomic island insertions observed in a variety of strains, including Bordetella petri, Pseudomonas aeruginosa and Burkholderia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Connexin36 (Cx36) is specifically expressed in neurons and in pancreatic beta-cells. Cx36 functions as a critical regulator of insulin secretion and content in beta-cells. In order to identify the molecular mechanisms that control the beta-cell expression of Cx36, we initiated the characterization of the human 5' regulatory region of the CX36 gene. A 2043-bp fragment of the human CX36 promoter was identified from a human BAC library and fused to a luciferase reporter gene. This promoter region was sufficient to confer specific expression to the reporter gene in insulin-secreting cell lines. Within this 5' regulatory region, a putative neuron-restrictive silencer element conserved between rodent and human species was recognized and binds the neuron-restrictive silencing factor (NRSF/REST). This factor is not expressed in insulin-secreting cells and neurons; it functions as a potent repressor through the recruitment of histone deacetylase to the promoter of neuronal genes. The NRSF-mediated repression of Cx36 in HeLa cells was abolished by trichostatin A, confirming the functional importance of histone deacetylase activity. Ectopic expression, by viral gene transfer, of NRSF/REST in different insulin-secreting beta-cell lines induced a marked reduction in Cx36 mRNA and protein content. Moreover, mutations in the Cx36 neuron-restrictive silencer element relieved the low transcriptional activity of the human CX36 promoter observed in HeLa cells and in INS-1 cells expressing NRSF/REST. The data showed that cx36 gene expression in insulin-producing beta-cell lines is strictly controlled by the transcriptional repressor NRSF/REST indicating that Cx36 participates to the neuronal phenotype of the pancreatic beta-cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liddle's syndrome is a monogenic form of hypertension caused by mutations in the PY motif of the COOH terminus of beta- and gamma-epithelial Na+ channel (ENaC) subunits. These mutations lead to retention of active channels at the cell surface. Because of the critical role of this PY motif in the stability of ENaCs at the cell surface, we have investigated its contribution to the ENaC response to aldosterone and vasopressin. Mutants of the PY motif in beta- and gamma-ENaC subunits (beta-Y618A, beta-P616L, beta-R564stop, and gamma-K570stop) were stably expressed by retroviral gene transfer in a renal cortical collecting duct cell line (mpkCCDcl4), and transepithelial Na+ transport was assessed by measurements of the benzamil-sensitive short-circuit current (Isc). Cells that express ENaC mutants of the PY motif showed a five- to sixfold higher basal Isc compared with control cells and responded to stimulation by aldosterone (10(-6) M) or vasopressin (10(-9) M) with a further increase in Isc. The rates of the initial increases in Isc after aldosterone or vasopressin stimulation were comparable in cells transduced with wild-type and mutant ENaCs, but reversal of the effects of aldosterone and vasopressin was slower in cells that expressed the ENaC mutants. The conserved sensitivity of ENaC mutants to stimulation by aldosterone and vasopressin together with the prolonged activity at the cell surface likely contribute to the increased Na+ absorption in the distal nephron of patients with Liddle's syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liposomes are vesicular lipidic systems allowing encapsulation of drugs. This article reviews the relevant issues in liposome structure (composition and size), and their influence on intravitreal pharmacokinetics. Liposome-mediated drug delivery to the posterior segment of the eye via intravitreal administration has been addressed by several authors and remains experimental. Liposomes have been used for intravitreal delivery of antibiotics, antivirals, antifungal drugs, antimetabolites, and cyclosporin. Encapsulation of these drugs within liposomes markedly increased their intravitreal half-life, and reduced their retinal toxicity. Liposomes have also shown an attractive potential for retinal gene transfer by intravitreal delivery of plasmids or oligonucleotides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Integration without cytotoxic effects and long-term expression of a transgene constitutes a major challenge in gene therapy and biotechnology applications. In this context, transposons represent an attractive system for gene transfer because of their ability to promote efficient integration of a transgene in a variety of cell lines. However, the transgene integration can lead to insertional mutagenesis and/or unstable transgene expression by epigenetic modifications. These unwanted events may be limited by the use of chromatin control elements called MARs (matrix attachment regions). Indeed, the insertion of these DNA elements next to the transgene usually results in higher and more stable expression by maintaining transgene chromatin in an active configuration and preventing gene silencing. In this study, we tested if the inclusion of the MAR 1-68 in the piggyBac transposon system may lead to efficient and safer transgene integration and ensure reliable stable and long-term expression of a transgene. The MAR-containing transposon construct was tested in CHO cells, for biotechnology applications, and in mesoangioblast cells that can differentiate into muscle cells and are important candidates for potential stem cell therapies of myopathies. We showed that the addition of the MAR 1 -68 in the piggyBac transposon did not interfere with transposition, thereby maintaining high frequency of transgene integrations in these cells. Moreover, the MAR allowed higher transgene expression from fewer transposon integration events. We also found that enriched transgene-expressing cell populations could be obtained without the need of selection pressure. Since antibiotic-enforced selection protocols often result in a higher integrated copy number and mosaic expression patterns, this strategy could benefit many applications in which a low copy number of integrated transgenes and antibiotic-free conditions are desired. In addition, the intramuscular transplantation of mouse tibialis anterior muscles with mesoangioblasts containing the transposon led to widespread and sustained myofiber transgene expression after differentiation of these cells in vivo. These findings indicated that piggyBac vectors may provide a viable approach to achieve stable gene transfer in the context of Duchenne muscular dystrophy therapy. - L'intégration sans effets cytotoxiques et l'expression à long terme d'un transgène constituent un défi majeur en thérapie génique et en biotechnologie. Dans ce contexte, les transposons représentent un système attrayant pour le transfert de gènes en raison de leur capacité à promouvoir l'intégration efficace d'un transgène dans une variété de lignées cellulaires. Toutefois, l'intégration d'un transgène peut conduire à une mutagénèse insertionnelle et/ou à une expression instable due au silençage du transgène suite à des modifications épigénétiques. Ces événements indésirables de silençage génique peuvent être diminués par l'utilisation d'éléments de contrôle de la chromatine appelés MAR (matrix attachment region). En effet, l'insertion de ces éléments d'ADN à proximité du transgène se traduit généralement par une expression plus élevée et plus stable de celui-ci, en permettant le maintien d'une chromatine dans une configuration active autour du transgène et en empêchant l'inactivation du gène. Dans cette étude, nous avons testé si l'inclusion du MAR 1-68 dans le système transposon piggyBac peut améliorer l'efficacité d'intégration de façon sécuritaire et l'expression à long terme d'un transgène. Le transposon contenant l'élément MAR a été testé dans les cellules CHO, couramment utilisées en biotechnologie, et dans des cellules progénitrices appelées mésoangioblastes, qui peuvent se différencier en cellules musculaires, et qui constituent ainsi des candidats prometteurs pour la thérapie à partir de cellules souches de patients souffrant de myopathie. Nous avons montré que l'addition du MAR 1-68 dans le transposon piggyBac n'interfère pas avec la transposition et permet de maintenir une fréquence élevée d'intégration du transgène dans ces deux types cellulaires. De plus, il semble que cette association mène à une meilleure expression du transgène à partir de peu d'événements d'intégration du transposon. En outre, ces populations enrichies en cellules exprimant de façon stable le transgène ont pu être obtenues sans avoir recours à une pression de sélection. Etant donné que les protocoles de sélection basée sur l'utilisation d'antibiotiques conduisent souvent à un nombre plus élevé de copies intégrées et à la variégation de l'expression du transgène et qu'ils impliquent une longue culture in vitro, cette stratégie pourrait profiter à des applications pour lesquelles on souhaite un faible nombre de copies intégrées et/ou l'utilisation d'antibiotiques n'est pas souhaitable. De plus, la transplantation intramusculaire de mésoangioblastes contenant le transposon dans le muscle tibial antérieur de souris a conduit, après la différentiation de ces cellules in vivo, à une expression constante et étendue du transgène dans les myofibres. Ces résultats indiquent que les vecteurs piggyBac pourraient fournir une approche viable pour assurer un transfert de gènes stables dans le contexte d'un traitement de la dystrophic musculaire de Duchenne.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease. Global brain gene delivery would allow to predict the regional distribution of the pathology as well as to deliver therapeutic factors in all affected brain regions. We show that self-complementary AAV2/9 (scAAV2/9) delivery in the adult rat cisterna magna allows a widespread but not homogenous transduction of the brain. Indeed, superficial regions, i.e., cortex, hippocampus, and cerebellum were more efficiently transduced than deeper regions, such as striatum, and substantia nigra. These data suggest that viral particles penetration from the cerebrospinal fluid (CSF) into the brain is a limiting factor. Interestingly, AAV2/9-2YF a rationally designed capsid mutant (affecting surface tyrosines) increased gene transfer efficiency approximately fivefold. Neurons, astrocytes, and oligodendrocytes, but not microglia, were transduced in varying proportions depending on the brain region and the type of capsid. Finally, after a single intracisternal injection of scAAV2/9-2YF using the NFκB-inducible promoter, KA treatment induced transgene expression in the hippocampus and cortex but not in the cerebellum, corresponding to the expression of the CD11b marker of microglial activation. These data support the use of disease-inducible vectors administered in the cisterna magna as a tool to characterize the brain pathology in systemic drug-induced or transgenic disease models. However, further improvements are required to enhance viral particles penetration into the brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The human Me14-D12 antigen is a cell surface glycoprotein regulated by interferon-gamma (IFN-gamma) on tumor cell lines of neuroectodermal origin. It consists of two non-convalently linked subunits with apparent mol. wt sizes of 33,000 and 38,000. Here we describe the molecular cloning of a genomic probe for the Me14-D12 gene using the gene transfer approach. Mouse Ltk- cells were stably cotransfected with human genomic DNA and the Herpes Simplex virus thymidine kinase (TK) gene. Primary and secondary transfectants expressing the Me14-D12 antigen were isolated after selection in HAT medium by repeated sorting on a fluorescence activated cell sorter (FACS). A recombinant phage harboring a 14.3 kb insert of human DNA was isolated from a genomic library made from a positive secondary transfectant cell line. A specific probe derived from the phage DNA insert allowed the identification of two mRNAs of 3.5 kb and 2.2 kb in primary and secondary L cell transfectants, as well as in human melanoma cell lines expressing the Me14-D12 antigen. The regulation of Me14-D12 antigen by INF-gamma was retained in the L cell transfectants and could be detected both at the level of protein and mRNA expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1-68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1-68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2-4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin (Htt) gene. Despite intensive efforts devoted to investigating the mechanisms of its pathogenesis, effective treatments for this devastating disease remain unavailable. The lack of suitable models recapitulating the entire spectrum of the degenerative process has severely hindered the identification and validation of therapeutic strategies. The discovery that the degeneration in HD is caused by a mutation in a single gene has offered new opportunities to develop experimental models of HD, ranging from in vitro models to transgenic primates. However, recent advances in viral-vector technology provide promising alternatives based on the direct transfer of genes to selected sub-regions of the brain. Rodent studies have shown that overexpression of mutant human Htt in the striatum using adeno-associated virus or lentivirus vectors induces progressive neurodegeneration, which resembles that seen in HD. This article highlights progress made in modeling HD using viral vector gene transfer. We describe data obtained with of this highly flexible approach for the targeted overexpression of a disease-causing gene. The ability to deliver mutant Htt to specific tissues has opened pathological processes to experimental analysis and allowed targeted therapeutic development in rodent and primate pre-clinical models.