952 resultados para GENE DELIVERY
Resumo:
The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.
Resumo:
Particle-mediated (gene gun) in vivo delivery of the murine interleukin 12 (IL-12) gene in an expression plasmid was evaluated for antitumor activity. Transfer of IL-12 cDNA into epidermal cells overlying an implanted intradermal tumor resulted in detectable levels (266.0 +/- 27.8 pg) of the transgenic protein at the skin tissue treatment site. Despite these low levels of transgenic IL-12, complete regression of established tumors (0.4-0.8 cm in diameter) was achieved in mice bearing Renca, MethA, SA-1, or L5178Y syngeneic tumors. Only one to four treatments with IL-12 cDNA-coated particles, starting on day 7 after tumor cell implantation, were required to achieve complete tumor regression. This antitumor effect was CD8+ T cell-dependent and led to the generation of tumor-specific immunological memory. By using a metastatic P815 tumor model, we further showed that a delivery of IL-12 cDNA into the skin overlying an advanced intradermal tumor, followed by tumor excision and three additional IL-12 gene transfections, could significantly inhibit systemic metastases, resulting in extended survival of test mice. These results suggest that gene gun-mediated in vivo delivery of IL-12 cDNA should be further developed for potential clinical testing as an approach for human cancer gene therapy.
Resumo:
Nerve growth factor (NGF) stimulates functional recovery from cognitive impairments associated with aging, either when administered as a purified protein or by means of gene transfer to the basal forebrain. Because gene transfer procedures need to be tested in long-term experimental paradigms to assess their in vivo efficiency, we have used ex vivo experimental gene therapy to provide local delivery of NGF to the aged rat brain over a period of 2.5 months by transplanting immortalized central nervous system-derived neural stem cells genetically engineered to secrete NGF. By grafting them at two independent locations in the basal forebrain, medial septum and nucleus basalis magnocellularis, we show that functional recovery as assessed in the Morris water maze can be achieved by neurotrophic stimulation of any of these cholinergic cell groups. Moreover, the cholinergic neurons in the grafted regions showed a hypertrophic response resulting in a reversal of the age-associated atrophy seen in the learning-impaired aged control rats. Long-term expression of the transgene lead to an increased NGF tissue content (as determined by NGF-ELISA) in the transplanted regions up to at least 10 weeks after grafting. We conclude that the gene transfer procedure used here is efficient to provide the brain with a long-lasting local supply of exogenous NGF, induces long-term functional recovery of cognitive functions, and that independent trophic stimulation of the medial septum or nucleus basalis magnocellularis has similar consequences at the behavioral level.
Resumo:
We describe a single autoregulatory cassette that allows reversible induction of transgene expression in response to tetracycline (tet). This cassette contains all of the necessary components previously described by others on two separate plasmids that are introduced sequentially over a period of months [Gossen, M. & Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547-5551]. The cassette is introduced using a retrovirus, allowing transfer into cell types that are difficult to transfect. Thus, populations of thousands of cells, rather than a few clones, can be isolated and characterized within weeks. To avoid potential interference of the strong retroviral long terminal repeat enhancer and promoter elements with the function of the tet-regulated cytomegalovirus minimal promoter, the vector is self-inactivating, eliminating transcription from the long terminal repeat after infection of target cells. Tandem tet operator sequences and the cytomegalovirus minimal promoter drive expression of a bicistronic mRNA, leading to transcription of the gene of interest (lacZ) and the internal ribosome entry site controlled transactivator (Tet repressor-VP16 fusion protein). In the absence of tet, there is a progressive increase in transactivator by means of an autoregulatory loop, whereas in the presence of tet, gene expression is prevented. Northern blot, biochemical, and single cell analyses have all shown that the construct yields low basal levels of gene expression and induction of one to two orders of magnitude. Thus, the current cassette of the retroviral construct (SIN-RetroTet vector) allows rapid delivery of inducible genes and should have broad applications to cultured cells, transgenic animals, and gene therapy.
Resumo:
Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control.
Resumo:
Development of antisense technology has focused in part on creating improved methods for delivering oligodeoxynucleotides (ODNs) to cells. In this report, we describe a cationic lipid that, when formulated with the fusogenic lipid dioleoylphosphatidyliethanolamine, greatly improves the cellular uptake properties of antisense ODNs, as well as plasmid DNA. This lipid formulation, termed GS 2888 cytofectin, (i) efficiently transfects ODNs and plasmids into many cell types in the presence or absence of 10% serum in the medium, (ii) uses a 4- to 10-fold lower concentration of the agent as compared to the commercially available Lipofectin liposome, and (iii) is > or = 20-fold more effective at eliciting antisense effects in the presence of serum when compared to Lipofectin. Here we show antisense effects using GS 2888 cytofectin together with C-5 propynyl pyrimidine phosphorothioate ODNs in which we achieve inhibition of gene expression using low nanomolar concentrations of ODN. This agent expands the utility of antisense ODNs for their use in understanding gene function and offers the potential for its use in DNA delivery applications in vivo.
Resumo:
Catalytic RNA molecules, or ribozymes, have generated significant interest as potential therapeutic agents for controlling gene expression. Although ribozymes have been shown to work in vitro and in cellular assays, there are no reports that demonstrate the efficacy of synthetic, stabilized ribozymes delivered in vivo. We are currently utilizing the rabbit model of interleukin 1-induced arthritis to assess the localization, stability, and efficacy of exogenous antistromelysin hammerhead ribozymes. The matrix metalloproteinase stromelysin is believed to be a key mediator in arthritic diseases. It seems likely therefore that inhibiting stromelysin would be a valid therapeutic approach for arthritis. We found that following intraarticular administration ribozymes were taken up by cells in the synovial lining, were stable in the synovium, and reduced synovial interleukin 1 alpha-induced stromelysin mRNA. This effect was demonstrated with ribozymes containing various chemical modifications that impart nuclease resistance and that recognize several distinct sites on the message. Catalytically inactive ribozymes were ineffective, thus suggesting a cleavage-mediated mechanism of action. These results suggest that ribozymes may be useful in the treatment of arthritic diseases characterized by dysregulation of metalloproteinase expression.
Resumo:
Restoration of the impaired balance between pro- and antiinflammatory cytokines should provide effective treatment of rheumatoid arthritis. Gene therapy has been proposed as an approach for delivery of therapeutic proteins to arthritic joints. Here, we examined the efficacy of antiinflammatory gene therapy in bacterial cell wall-induced arthritis in rats. Human secreted interleukin 1 receptor antagonist (sIL-1ra) was expressed in joints of rats with recurrent bacterial cell wall-induced arthritis by using ex vivo gene transfer. To achieve this, primary synoviocytes were transduced in culture with a retroviral vector carrying the sIL-1ra cDNA. Transduced cells were engrafted in ankle joints of animals prior to reactivation of arthritis. Animals in control groups were engrafted with synoviocytes transduced with lacZ and neo marker genes. Cells continued to express transferred genes for at least 9 days after engraftment. We found that gene transfer of sIL-1ra significantly suppressed the severity of recurrence of arthritis, as assessed by measuring joint swelling and by the gross-observation score, and attenuated but did not abolish erosion of cartilage and bone. The effect of intraarticularly expressed sIL-1ra was essentially local, as there was no significant difference in severity of recurrence between unengrafted contralateral joints in control and experimental groups. We estimate that locally expressed sIL-1ra was about four orders of magnitude more therapeutically efficient than systemically administered recombinant sIL-1ra protein. These findings provide experimental evidence for the feasibility of antiinflammatory gene therapy for arthritis.
Resumo:
Vaccination with live Leishmania major has been shown to yield effective immunization in humans; however, this has been discontinued because of problems associated with virulence of the available vaccine lines. To circumvent this, we tested the ability of a dhfr-ts- null mutant of L. major, obtained by gene targeting, to infect and then to vaccinate mice against challenge with virulent L. major. Survival and replication of dhfr-ts- in macrophages in vitro were dependent upon thymidine, with parasites differentiating into amastigotes prior to destruction. dhfr-ts- parasites persisted in BALB/c mice for up to 2 months, declining with a half-life of 2-3 days. Nonetheless, dhfr-ts- was incapable of causing disease in both susceptible and immunodeficient (nu/nu) BALB/c mice. Animal infectivity could be partially restored by thymidine supplementation. When inoculated by the i.v., s.c., or i.m. routes into mice, dhfr-ts- could elicit substantial resistance to a subsequent challenge with virulent L. major. Thus, Leishmania bearing auxotrophic gene knockouts can be safe and induce protective immunity. Potentially, dhfr-ts- could be used as a platform for delivery of immunogens relevant to other diseases.
Resumo:
We have investigated the in vivo efficacy of a systemic gene transfer method, which combines a liposomal delivery system (DLS liposomes) with episomally replicative DNA plasmids to effect long-term expression of a transgene in cells. A single i.v. injection of a plasmid DNA vector containing the luciferase gene as a marker was administered with the DLS liposomes in BALB/c mice. The luciferase gene and its product were found in all mouse tissues tested as determined by PCR analysis and immunohistochemistry. Luciferase activity was also detected in all tissues tested and was present in lung, liver, spleen, and heart up to 3 months postinjection. In contrast to the nonepisomal vectors tested (pRSV-luc and pCMVintlux), human papovavirus (BKV)-derived episomal vectors showed long-term transgene expression. We found that these episomal vectors replicated extrachromosomally in lung 2 weeks postinjection. Results indicated that transgene expression in specific tissues depended on the promoter element used, DNA/liposome formulation, dose of DNA per injection, and route of administration.
Resumo:
The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.
Resumo:
The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 +/- 0.4% and 58.7 +/- 3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 +/- 0.1 g/dl and 19.8 +/- 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.
Resumo:
We have generated herpes simplex virus (HSV) vectors vIE1GT and v alpha 4GT bearing the GLUT-1 isoform of the rat brain glucose transporter (GT) under the control of the human cytomegalovirus ie1 and HSV alpha 4 promoters, respectively. We previously reported that such vectors enhance glucose uptake in hippocampal cultures and the hippocampus. In this study we demonstrate that such vectors can maintain neuronal metabolism and reduce the extent of neuron loss in cultures after a period of hypoglycemia. Microinfusion of GT vectors into the rat hippocampus also reduces kainic acid-induced seizure damage in the CA3 cell field. Furthermore, delivery of the vector even after onset of the seizure is protective, suggesting that HSV-mediated gene transfer for neuroprotection need not be carried out in anticipation of neurologic crises. Using the bicistronic vector v alpha 22 beta gal alpha 4GT, which coexpresses both GT and the Escherichia coli lacZ marker gene, we further demonstrate an inverse correlation between the extent of vector expression in the dentate and the amount of CA3 damage resulting from the simultaneous delivery of kainic acid.
Resumo:
Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.
Resumo:
Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.