935 resultados para Functional Requirements for Authority Data (FRAD)
Resumo:
P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
The use of computational fluid dynamics simulations for calibrating a flush air data system is described, In particular, the flush air data system of the HYFLEX hypersonic vehicle is used as a case study. The HYFLEX air data system consists of nine pressure ports located flush with the vehicle nose surface, connected to onboard pressure transducers, After appropriate processing, surface pressure measurements can he converted into useful air data parameters. The processing algorithm requires an accurate pressure model, which relates air data parameters to the measured pressures. In the past, such pressure models have been calibrated using combinations of flight data, ground-based experimental results, and numerical simulation. We perform a calibration of the HYFLEX flush air data system using computational fluid dynamics simulations exclusively, The simulations are used to build an empirical pressure model that accurately describes the HYFLEX nose pressure distribution ol cr a range of flight conditions. We believe that computational fluid dynamics provides a quick and inexpensive way to calibrate the air data system and is applicable to a broad range of flight conditions, When tested with HYFLEX flight data, the calibrated system is found to work well. It predicts vehicle angle of attack and angle of sideslip to accuracy levels that generally satisfy flight control requirements. Dynamic pressure is predicted to within the resolution of the onboard inertial measurement unit. We find that wind-tunnel experiments and flight data are not necessary to accurately calibrate the HYFLEX flush air data system for hypersonic flight.
Resumo:
A longitudinal study of 55 adults with severe traumatic brain injury (TBI) investigated the areas of function for which they lacked self-awareness of their level of competency. Data were collected at 3 and 12 months post-injury using the Patient Competency Rating Scale. Self-awareness was measured by comparing patient self-ratings with the ratings of an infor mant. The results were consistent with previous studies, indicating that self-awareness was most impaired for activities with a large cognitive and socioemotional component, and least impaired for basic activities of daily living, memory activities, and overt emotional responses. For most areas of function that were overestimated at 3 months post-injury, self-awareness subsequently improved during the first year after injury.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.
Resumo:
To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.
Resumo:
Estimating energy requirements is necessary in clinical practice when indirect calorimetry is impractical. This paper systematically reviews current methods for estimating energy requirements. Conclusions include: there is discrepancy between the characteristics of populations upon which predictive equations are based and current populations; tools are not well understood, and patient care can be compromised by inappropriate application of the tools. Data comparing tools and methods are presented and issues for practitioners are discussed. (C) 2003 International Life Sciences Institute.
Resumo:
Taking functional programming to its extremities in search of simplicity still requires integration with other development (e.g. formal) methods. Induction is the key to deriving and verifying functional programs, but can be simplified through packaging proofs with functions, particularly folds, on data (structures). Totally Functional Programming avoids the complexities of interpretation by directly representing data (structures) as platonic combinators - the functions characteristic to the data. The link between the two simplifications is that platonic combinators are a kind of partially-applied fold, which means that platonic combinators inherit fold-theoretic properties, but with some apparent simplifications due to the platonic combinator representation. However, despite observable behaviour within functional programming that suggests that TFP is widely-applicable, significant work remains before TFP as such could be widely adopted.
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
Resumo:
This special issue represents a further exploration of some issues raised at a symposium entitled “Functional magnetic resonance imaging: From methods to madness” presented during the 15th annual Theoretical and Experimental Neuropsychology (TENNET XV) meeting in Montreal, Canada in June, 2004. The special issue’s theme is methods and learning in functional magnetic resonance imaging (fMRI), and it comprises 6 articles (3 reviews and 3 empirical studies). The first (Amaro and Barker) provides a beginners guide to fMRI and the BOLD effect (perhaps an alternative title might have been “fMRI for dummies”). While fMRI is now commonplace, there are still researchers who have yet to employ it as an experimental method and need some basic questions answered before they venture into new territory. This article should serve them well. A key issue of interest at the symposium was how fMRI could be used to elucidate cerebral mechanisms responsible for new learning. The next 4 articles address this directly, with the first (Little and Thulborn) an overview of data from fMRI studies of category-learning, and the second from the same laboratory (Little, Shin, Siscol, and Thulborn) an empirical investigation of changes in brain activity occurring across different stages of learning. While a role for medial temporal lobe (MTL) structures in episodic memory encoding has been acknowledged for some time, the different experimental tasks and stimuli employed across neuroimaging studies have not surprisingly produced conflicting data in terms of the precise subregion(s) involved. The next paper (Parsons, Haut, Lemieux, Moran, and Leach) addresses this by examining effects of stimulus modality during verbal memory encoding. Typically, BOLD fMRI studies of learning are conducted over short time scales, however, the fourth paper in this series (Olson, Rao, Moore, Wang, Detre, and Aguirre) describes an empirical investigation of learning occurring over a longer than usual period, achieving this by employing a relatively novel technique called perfusion fMRI. This technique shows considerable promise for future studies. The final article in this special issue (de Zubicaray) represents a departure from the more familiar cognitive neuroscience applications of fMRI, instead describing how neuroimaging studies might be conducted to both inform and constrain information processing models of cognition.
Resumo:
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.
Resumo:
CD40-1igand (CD40-L), a member of the tumour necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. CD40 is expressed by B cells, monocytes and dendritic cells. Interactions between CD40-L and CD40 induce B cell proliferation, differentiation, immunoglobulin production and isotype switching as well as monocyte activation and dendritic cell differentiation. Since the rheumatoid synovium is characterized by T cell activation, B cell immunoglobulin production, monocyte cytokine production and dendritic cell differentiation, the expression and function of CD40-L in RA was examined. RA synovial fluid (SF) T ceils expressed CD40-L mRNA, as well as low level cell surface CD40-L. A subset of CD4+ RA synovial fluid T cells could express cell surface CD40-L within 15 rain of in vitro activation even in the presence of cycloheximide. CD40-L expressed by RA SF T cells was functional, since RA SF T cells, but not normal PB T cells, stimulated CD40-L dependent B cell immunoglobulin production in the absence of in vitro T cell activation. These data indicate that SF T cells express functionally significant levels of surface CD40-L, and have the potential for rapid upregulation of surface expression from preformed CD40-L stores. Thus, CD40-L is likely to play a central role in the perpetuation of RA by induction of Ig synthesis, cytokine production and dendritic cell differentiation. Moreover, the data provide important evidence of recent activation of RA synovial T cells. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.
Resumo:
Objectives: Assess the effect of re-expansive respiratory patterns associated to respiratory biofeedback (RBF) on pulmonary function, respiratory muscle strength and habits in individuals with functional mouth breathing (FMB). Methods: Sixty children with FMB were divided into experimental and control groups. The experimental group was submitted to 15 sessions of re-expansive respiratory patterns associated to RBF (biofeedback pletsmovent; MICROHARD (R) V1.0), which provided biofeedback of the thoracic and abdominal movements. The control group was submitted to 15 sessions using biofeedback alone. Spirometry, maximum static respiratory pressure measurements and questions regarding habits (answered by parents/guardians) were carried out before and after therapy. The Student`s t-test for paired data and non-parametric tests were employed for statistical analysis at a 5% Level of significance. Results: Significant changes were found in forced vital. capacity, Tiffeneau index scores, maximum expiratory pressure, maximum inspiratory pressure and habits assessed in FMB with the use of RBF associated to the re-expansive patterns. No significant differences were found comparing the experimental and control groups. Conclusions: The results allow the conclusion that RBF associated to re-expansive patterns improves forced vital capacity, Tiffeneau index scores, respiratory muscle strength and habits in FMB and can therefore be used as a form of therapy for such individuals. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Wavelet correlation between subjects: A time-scale data driven analysis for brain mapping using fMRI
Resumo:
Functional magnetic resonance imaging (fMRI) based on BOLD signal has been used to indirectly measure the local neural activity induced by cognitive tasks or stimulation. Most fMRI data analysis is carried out using the general linear model (GLM), a statistical approach which predicts the changes in the observed BOLD response based on an expected hemodynamic response function (HRF). In cases when the task is cognitively complex or in cases of diseases, variations in shape and/or delay may reduce the reliability of results. A novel exploratory method using fMRI data, which attempts to discriminate between neurophysiological signals induced by the stimulation protocol from artifacts or other confounding factors, is introduced in this paper. This new method is based on the fusion between correlation analysis and the discrete wavelet transform, to identify similarities in the time course of the BOLD signal in a group of volunteers. We illustrate the usefulness of this approach by analyzing fMRI data from normal subjects presented with standardized human face pictures expressing different degrees of sadness. The results show that the proposed wavelet correlation analysis has greater statistical power than conventional GLM or time domain intersubject correlation analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.