804 resultados para Freedom of information.
Resumo:
Develop software is still a risky business. After 60 years of experience, this community is still not able to consistently build Information Systems (IS) for organizations with predictable quality, within previously agreed budget and time constraints. Although software is changeable we are still unable to cope with the amount and complexity of change that organizations demand for their IS. To improve results, developers followed two alternatives: Frameworks that increase productivity but constrain the flexibility of possible solutions; Agile ways of developing software that keep flexibility with less upfront commitments. With strict frameworks, specific hacks have to be put in place to get around the framework construction options. In time this leads to inconsistent architectures that are harder to maintain due to incomplete documentation and human resources turnover. The main goals of this work is to create a new way to develop flexible IS for organizations, using web technologies, in a faster, better and cheaper way that is more suited to handle organizational change. To do so we propose an adaptive object model that uses a new ontology for data and action with strict normalizing rules. These rules should bound the effects of changes that can be better tested and therefore corrected. Interfaces are built with templates of resources that can be reused and extended in a flexible way. The “state of the world” for each IS is determined by all production and coordination acts that agents performed over time, even those performed by external systems. When bugs are found during maintenance, their past cascading effects can be checked through simulation, re-running the log of transaction acts over time and checking results with previous records. This work implements a prototype with part of the proposed system in order to have a preliminary assessment its feasibility and limitations.
Resumo:
We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Publicado separadamete en cada idioma
Resumo:
Includes bibliography