822 resultados para Free Cash Flow to Firm
Resumo:
The purpose of this paper is to document the prevalent ownership concentration, structure and control in the top 100 companies listed on the Istanbul Stock Exchange. The results are discussed in the context of emerging corporate governance trends in Turkey. Where appropriate, comparisons with other countries are provided. The results of the study indicate that ownership of Turkish companies is highly concentrated, families being the dominant shareholders. The separation of ownership and control among Turkish companies is mainly achieved through pyramidal ownership structures and the presence of big business groups. However, the cash flow and voting rights in Turkish companies are relatively more aligned compared to other family–ownership–dominated insider–system countries.
Resumo:
Objectives: to evaluate the effectiveness of a policy of making hip protectors available to residents of nursing homes. Design: a cluster randomised controlled trial of the policy in nursing and residential homes, with the home as the unit of randomisation. Setting: 127 nursing and residential homes in the greater Belfast area of Northern Ireland. Participants: 40 homes in the intervention group (representing 1,366 occupied beds) and 87 homes in the control group (representing 2,751 occupied beds). Interventions: a policy of making hip protectors available free of charge to residents of nursing homes and supporting the implementation process by employing a nurse facilitator to encourage staff in the homes to promote their use, over a 72-week period. Main outcome measures: the rate of hip fractures in intervention and control homes, and the level of adherence to use of hip protectors. Results: there were 85 hip fractures in the intervention homes and 163 in the control homes. The mean fracture rate per 100 residents was 6.22 in the intervention homes and 5.92 in the control homes, giving an adjusted rate ratio for the intervention group compared to the control group of 1.05 (95% CI 0.77, 1.43, P = 0.76). Initial acceptance of the hip protectors was 37.2% (508/1,366) with adherence falling to 19.9% (272/1,366) at 72 weeks. Conclusions: making hip protectors available to residents of nursing and residential homes did not reduce the rate of hip fracture.
Resumo:
Conducting polymers suffer from folds and kinks because of random nucleation and solvation of a free radical cation to yield a cross linked/disordered polymer and therefore a solvent free electrochemical polymerization in a room temperature melt medium is adopted to yield a high degree polymer with high electronic conductivity. Electropolymerization of thiophene was performed on platinum/ITO substrates using cyclic voltametry or galvenostatic mode in chloroaluminate room temperature melt medium to obtain a reddish brown free standing film which can be peeled off from the electrode surface after a minimum of 10 cycles. The conductivity was found to be around 102 S/cm. The degree of polymerization was calculated to be around 44 from IR studies. A layered structure supportive for high degree of polymerization was witnessed from potential step technique. From UV spectra the charge carriers were found to be bipolarons. The morphology of the film was found to be crystalline from SEM and XRD studies. Capacitative impedance properties for doped samples were interpreted from impedance spectroscopy.
Resumo:
Germanium has been bonded to both single crystal Al2O 3 (sapphire) as well as fine grain Al2O3. A germanium to sapphire bonding energy of 3 J/m2 has been measured after a 200 °C bond anneal. Micro voids formed between the germanium/sapphire interface can be removed by employing an interfacial layer of silicon dioxide on either surface. Patterning the sapphire into a grid pattern prior to bonding creates an escape path for trapped gas or moisture allowing micro void free direct bonding to be achieved. Modifying the surface of the fine grain Al2O3 surface with a polycrystalline silicon deposition and polish creates a surface, having an rms roughness (measured over a 250© m2 area), of 1.5nm, suitable for bonding. Techniques employed in the germanium sapphire bonding can then be used in the bonding of fine grain A12O3 to germanium. © The Electrochemical Society.
Resumo:
In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
A detailed understanding of flow and contaminant transfer along each of the key hydrological pathways within a catchment is critical for designing and implementing cost effective Programmes of Measures under the Water
Framework Directive.
The Contaminant Movement along Pathways Project (’The Pathways Project’) is an Irish, EPA STRIVE funded, large multi-disciplinary project which is focussed on understanding and modelling flow and attenuation along each of these pathways for the purposes of developing a catchment management tool. The tool will be used by EPA and RBD catchment managers to assess and manage the impacts of diffuse contamination on stream aquatic ecology. Four main contaminants of interest — nitrogen, phosphorus, sediment and pathogens — are being
investigated in four instrumented test catchments. In addition to the usual hydrological and water chemistry/quality parameters typically captured in catchment studies, field measurements at the test catchments include ecological
sampling, sediment dynamics, soil moisture dynamics, and groundwater levels and chemistry/quality, both during and between significant rainfall events. Spatial and temporal sampling of waters directly from the pathways of
interest is also being carried out.
Sixty-five percent of Ireland is underlain by poorly productive aquifers. In these hydrogeological settings, the main pathways delivering flow to streams are overland flow, interflow and shallow bedrock flow. Little is
known about the interflow pathway and its relative importance in delivery of flow and contaminants to the streams. Interflow can occur in both the topsoil and subsoil, and may include unsaturated matrix flow, bypass or macropore
flow, saturated flow in locally perched water tables and artificial field drainage.
Results to date from the test catchment experiments show that artificial field drains play an important role in the delivery of interflow to these streams, during and between rainfall events when antecedent conditions are
favourable. Hydrochemical mixing models, using silica and SAC254 (the absorbance of UV light at a wavelength of 254 nm which is a proxy for dissolved organic matter) as tracers, show that drain flow is an important end
member contributing to the stream and that proportionally, its contribution is relatively high.
Results from the study also demonstrate that waters originating from one pathway often mix with the waters from another, and are subsequently delivered to the stream at rates, and with chemical/quality characteristics,
that are not typical of either pathway. For example, pre-event shallow groundwater not far from the catchment divide comes up to the surface as rejected recharge during rainfall events and is rapidly delivered to the stream
via overland flow and/or artificial land drainage, bringing with it higher nitrate than would often be expected from a quickflow pathway contribution. This is contrary to the assumption often made in catchment studies that the
deeper hydrological pathways have slower response times in stream hydrographs during a rainfall event, and it emphasizes that it is critical to have a strong three-dimensional conceptual model as the basis for the interpretation
of catchment data.
Resumo:
When examining complex problems, such as the folding of proteins, coarse grained descriptions of the system drive our investigation and help us to rationalize the results. Oftentimes collective variables (CVs), derived through some chemical intuition about the process of interest, serve this purpose. Because finding these CVs is the most difficult part of any investigation, we recently developed a dimensionality reduction algorithm, sketch-map, that can be used to build a low-dimensional map of a phase space of high-dimensionality. In this paper we discuss how these machine-generated CVs can be used to accelerate the exploration of phase space and to reconstruct free-energy landscapes. To do so, we develop a formalism in which high-dimensional configurations are no longer represented by low-dimensional position vectors. Instead, for each configuration we calculate a probability distribution, which has a domain that encompasses the entirety of the low-dimensional space. To construct a biasing potential, we exploit an analogy with metadynamics and use the trajectory to adaptively construct a repulsive, history-dependent bias from the distributions that correspond to the previously visited configurations. This potential forces the system to explore more of phase space by making it desirable to adopt configurations whose distributions do not overlap with the bias. We apply this algorithm to a small model protein and succeed in reproducing the free-energy surface that we obtain from a parallel tempering calculation.
Resumo:
The non-destructive evaluation of the water permeability of concrete structures is a long standing challenge, principally due to the difficulty of achieving a uni-direction flow for computing the water permeability coefficient. The use of a guard ring (GR) was originally proposed for the in situ sorptivity test, but little information can be found for the water permeability test. In this study, the effect of a GR was carefully examined through the flow simulation, which was verified by carrying out experiments. It was observed that the GR can confine the flow near the surface, but cannot achieve a uni-directional flow across the whole depth of flow. To achieve a better performance, it is essential to consider the effects of the size of the inner seal and the GR and the significant interaction between these two. The analysis of the experimental data has indicated that the GR influences the flow for porous concretes, but there is no significant effect for dense concretes. Further investigation, validated using the flow-net theory, has shown a strong correlation between the water permeability coefficients obtained with the GR (K w-GR) and without it (K w-No GR), suggesting that one dimensional flow is not essential for interpreting data for site tests. Another practical issue was that more than 30 % of the tests with GR failed due to the difficulty of achieving a good seal between the inner and the outer chambers. Based on the work reported in this paper, a new water permeability test is proposed.
Resumo:
Fault and fracture systems are the most important store and pathway for groundwater in Ireland’s bedrock aquifers, either directly as conductive flow structures, or indirectly as the locus for the development of dolomitised limestone and karst. This article presents the preliminary results of a study involving the quantitative analysis of fault and fracture systems in the broad range of Irish bedrock types and a consideration of their impact on groundwater flow. The principal aims of the project are to develop generic conceptual models for different fault/fracture systems in different lithologies and at different depths, and to link them to observed groundwater behaviour. Here we briefly describe the geometrical characteristics of the main post-Devonian fault/fracture systems controlling groundwater flow from field observations at outcrops, quarries and mines. The structures range from Lower Carboniferous normal faults through to Variscan-related faults and veins, with the most recent structures including Tertiary strike-slip faults and ubiquitous uplift-related joint systems. The geometrical characteristics of different fault/fracture systems combined with observations of groundwater behaviour in both quarry and mine localities, can be linked to general flow and transport conceptualisations of Irish fractured bedrock. Most importantly they also provide a basis for relating groundwater flow to particular fault/fracture systems and their expression with depth and within different lithological sequences, as well as their regional variability.
Resumo:
Background and purpose: The manipulation of tumour blood supply and thus oxygenation is a potentially important strategy for improving the treatment of solid tumours by radiation. Increased knowledge about the characteristics that distinguish the tumour vasculature from its normal counterparts may enable tumour blood flow to be more selectively modified, Nicotinamide (NA) causes relaxation of preconstricted normal and tumour-supply arteries in rats. It has also been shown to affect microregional blood flow in human tumours. Direct effects of NA on human tumour supply arteries have not previously been reported. This paper describes our evaluation of the effects of NA on two parameters: 'spontaneous', oscillatory contractile activity and agonist (phenylephrine)-induced constriction in the arteries supplying human renal cell carcinomas.
Materials and methods: Isolated renal cell carcinoma feeder vessels were perfused in an organ bath with the alpha(1)-adrenoceptor agonist phenylephrine (PE). When the arteries had reached a plateau of constriction, nicotinamide (8.2 mM) was added to the perfusate and changes in perfusion pressure were measured.
Results: PE (10 mu M) induced a sustained constriction in the majority of the renal cell carcinoma feeder vessels examined, demonstrating that they retain contractile characteristics, at least in response to this alpha(1)-adrenoceptor agonist. In combination with NA (8.2 mM) the constriction was significantly attenuated in half of the preparations. In addition, seven arteries exhibited spontaneous contractile activity which was significantly attenuated by NA in six of them.
Conclusions: NA can significantly attenuate both 'spontaneous' and agonist-induced constrictions in tumour-recruited human arteries, though not all arteries are sensitive. Published by Elsevier Science Ireland Ltd.
Resumo:
On formal credit markets, access to formal credit and reasonable credit terms of smallholder farmers
in rural sub-Saharan Africa is limited due to adverse selection. Financial institutions operating in
rural areas often cannot distinguish between borrowers (farmers) that are creditworthy and those that
are not, thus, allocate limited resource to agriculture to reduce credit risk. In the presence of limited business quality signaling by smallholder farmers, financial institutions shall demand for collateral and/or offer unfavorable contract terms. Moreover, agricultural productivity of rural sub-Saharan
Africa, dominated by subsistence or small-scale farmers, is also negatively impacted by the adverse
effect of climate change. A strategy that may make the farming practices of smallholder farmer’s
climate resilient and profitable may also improve smallholder farmer's access to formal credit. This
study investigates to what extent participating in ecosystem and extension services (EES) programs
signals business quality of smallholders, thus granting them credit accessibility. We collected data
on 210 smallholder farmers in 2013, comprising farmers that receive payments for ecosystem
services (PES) and farm management training from the International Small Group Tree Planting
Program (TIST) Kenya to test the aforementioned theory empirically. We use game theory,
particularly a screening and sorting model, to illustrate the prospects for farmers with EES to access
formal credit and to improve their credit terms given that they receive PES and banking services
training. Furthermore, the PES’ long term duration (10 – 30 years) generates stable cash-flow which
may be perceived as collateral substitute. Results suggest that smallholder farmers in the TIST
program were less likely to be credit constraint compared to non-TIST farmers. Distance to market,
education, livestock and farm income are factors that determine access to credit from microfinance
institutions in rural Kenya. Amongst farmers that have obtained loans, those keeping business records
enjoy more favorable formal credit conditions. These farmers were observed to pay ca. 5 percent less
interest rate in microfinance charges. For TIST farmers, this type of farm management practices may
be attributed to the banking services and other training they receive within the program. While the
availability of classical collateral (farmlands) and PES may reduce interest rate, the latter was found
to be statistically insignificant. This research underlines the importance of an effective extension
services in rural areas of developing countries and the need to improve gains from conservation
agriculture and ensuing PES. The benefits associated with EES and PES may encompass agricultural
financing.
Resumo:
Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.
Resumo:
Background: The European badger (Melesmeles) is involved in the maintenance of bovine tuberculosis infection and onward spread to cattle. However, little is known about how transmission occurs. One possible route could be through direct contact between infected badgers and cattle. It is also possible that indirect contact between cattle and infected badger excretory products such as faeces or urine may occur either on pasture or within and around farm buildings. A better understanding of behaviour patterns in wild badgers may help to develop biosecurity measures to minimise direct and indirect contact between badgers and cattle. However, monitoring the behaviour of free-ranging badgers can be logistically challenging and labour intensive due to their nocturnal and semi-fossorial nature.We trialled a GPS and tri-axial accelerometer-equipped collar on a free-ranging badger to assess its potential value to elucidate behaviour-time budgets and functional habitat use. Results: During the recording period between 16:00 and 08:00 on a single night, resting was the most commonly identified behaviour (67.4%) followed by walking (20.9%), snuffling (9.5%) and trotting (2.3%).When examining accelerometer data associated with each GPS fix and habitat type (occurring 2 min 30 s before and after), walking was themost common behaviour in woodland (40.3%) and arable habitats (53.8%), while snuffling was themost common behaviour in pasture (61.9%). Several nocturnal resting periods were also observed. The total distance travelled was 2.28 km. Conclusions: In the present report, we demonstrate proof of principle in the application of a combined GPS and accelerometer device to collect detailed quantitative data on wild badger behaviour. Behaviour-time budgets allow us to investigate how badgers allocate energy to different activities and how thismight change with disease status. Such information could be useful in the development of measures to reduce opportunities for onward transmission of bovine tuberculosis from badgers to cattle.
Resumo:
The role of arbuscular mycorrhizal fungi (AMF) in resisting surface flow soil erosion has never been tested experimentally. We set up a full factorial greenhouse experiment using Achillea millefolium with treatments consisting of addition of AMF inoculum and non-microbial filtrate, non-AMF inoculum and microbial filtrate, AMF inoculum and microbial filtrate, and non-AMF inoculum and non-microbial filtrate (control) which were subjected to a constant shear stress in the form of surface water flow to quantify the soil detachment rate through time. We found that soil loss can be explained by the combined effect of roots and AMF extraradical hyphae and we could disentangle the unique effect of AMF hyphal length, which significantly reduced soil loss, highlighting their potential importance in riparian systems.