942 resultados para Free Boundary Value Problem
Resumo:
We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.
Resumo:
The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.
Resumo:
Measurement association and initial orbit determination is a fundamental task when building up a database of space objects. This paper proposes an efficient and robust method to determine the orbit using the available information of two tracklets, i.e. their line-of-sights and their derivatives. The approach works with a boundary-value formulation to represent hypothesized orbital states and uses an optimization scheme to find the best fitting orbits. The method is assessed and compared to an initial-value formulation using a measurement set taken by the Zimmerwald Small Aperture Robotic Telescope of the Astronomical Institute at the University of Bern. False associations of closely spaced objects on similar orbits cannot be completely eliminated due to the short duration of the measurement arcs. However, the presented approach uses the available information optimally and the overall association performance and robustness is very promising. The boundary-value optimization takes only around 2% of computational time when compared to optimization approaches using an initial-value formulation. The full potential of the method in terms of run-time is additionally illustrated by comparing it to other published association methods.
Resumo:
The latest technology and architectural trends have significantly improved the use of a large variety of glass products in construction which, in function of their own characteristocs, allow to design and calculate structural glass elements under safety conditions. This paper presents the evaluation and analysis of the damping properties of rectangular laminated glass plates of 1.938 m x 0.876 m with different thickness depending on the number of PVB interlayers arranged. By means of numerical simulation and experimental verification, using modal analysis, natural frequencies and damping of the glass plates were calculated, both under free boundary conditions and operational conditions for the impact test equipment used in the experimental program, as the European standard UNE-EN 12600:2003 specifies.
Resumo:
La presente Tesis Doctoral aborda la introducción de la Partición de Unidad de Bernstein en la forma débil de Galerkin para la resolución de problemas de condiciones de contorno en el ámbito del análisis estructural. La familia de funciones base de Bernstein conforma un sistema generador del espacio de funciones polinómicas que permite construir aproximaciones numéricas para las que no se requiere la existencia de malla: las funciones de forma, de soporte global, dependen únicamente del orden de aproximación elegido y de la parametrización o mapping del dominio, estando las posiciones nodales implícitamente definidas. El desarrollo de la formulación está precedido por una revisión bibliográfica que, con su punto de partida en el Método de Elementos Finitos, recorre las principales técnicas de resolución sin malla de Ecuaciones Diferenciales en Derivadas Parciales, incluyendo los conocidos como Métodos Meshless y los métodos espectrales. En este contexto, en la Tesis se somete la aproximación Bernstein-Galerkin a validación en tests uni y bidimensionales clásicos de la Mecánica Estructural. Se estudian aspectos de la implementación tales como la consistencia, la capacidad de reproducción, la naturaleza no interpolante en la frontera, el planteamiento con refinamiento h-p o el acoplamiento con otras aproximaciones numéricas. Un bloque importante de la investigación se dedica al análisis de estrategias de optimización computacional, especialmente en lo referente a la reducción del tiempo de máquina asociado a la generación y operación con matrices llenas. Finalmente, se realiza aplicación a dos casos de referencia de estructuras aeronáuticas, el análisis de esfuerzos en un angular de material anisotrópico y la evaluación de factores de intensidad de esfuerzos de la Mecánica de Fractura mediante un modelo con Partición de Unidad de Bernstein acoplada a una malla de elementos finitos. ABSTRACT This Doctoral Thesis deals with the introduction of Bernstein Partition of Unity into Galerkin weak form to solve boundary value problems in the field of structural analysis. The family of Bernstein basis functions constitutes a spanning set of the space of polynomial functions that allows the construction of numerical approximations that do not require the presence of a mesh: the shape functions, which are globally-supported, are determined only by the selected approximation order and the parametrization or mapping of the domain, being the nodal positions implicitly defined. The exposition of the formulation is preceded by a revision of bibliography which begins with the review of the Finite Element Method and covers the main techniques to solve Partial Differential Equations without the use of mesh, including the so-called Meshless Methods and the spectral methods. In this context, in the Thesis the Bernstein-Galerkin approximation is subjected to validation in one- and two-dimensional classic benchmarks of Structural Mechanics. Implementation aspects such as consistency, reproduction capability, non-interpolating nature at boundaries, h-p refinement strategy or coupling with other numerical approximations are studied. An important part of the investigation focuses on the analysis and optimization of computational efficiency, mainly regarding the reduction of the CPU cost associated with the generation and handling of full matrices. Finally, application to two reference cases of aeronautic structures is performed: the stress analysis in an anisotropic angle part and the evaluation of stress intensity factors of Fracture Mechanics by means of a coupled Bernstein Partition of Unity - finite element mesh model.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
Population balances of polymer species in terms 'of discrete transforms with respect to counts of groups lead to tractable first order partial differential equations when ali rate constants are independent of chain length and loop formation is negligible [l]. Average molecular weights in the absence ofgelation are long known to be readily found through integration of an initial value problem. The extension to size distribution prediction is also feasible, but its performance is often lower to the one provided by methods based upon real chain length domain [2]. Moreover, the absence ofagood starting procedure and a higher numerical sensitivity hás decisively impaired its application to non-linear reversibly deactivated polymerizations, namely NMRP [3].
Resumo:
"UILU-ENG 80 1712."
Resumo:
Vita.
Resumo:
Thesis (M.S.)--University of Illinois, 1970.
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
A group is termed parafree if it is residually nilpotent and has the same nilpotent quotients as a given free group. Since free groups are residually nilpotent, they are parafree. Nonfree parafree groups abound and they all have many properties in common with free groups. Finitely presented parafree groups have solvable word problems, but little is known about the conjugacy and isomorphism problems. The conjugacy problem plays an important part in determining whether an automorphism is inner, which we term the inner automorphism problem. We will attack these and other problems about parafree groups experimentally, in a series of papers, of which this is the first and which is concerned with the isomorphism problem. The approach that we take here is to distinguish some parafree groups by computing the number of epimorphisms onto selected finite groups. It turns out, rather unexpectedly, that an understanding of the quotients of certain groups leads to some new results about equations in free and relatively free groups. We touch on this only lightly here but will discuss this in more depth in a future paper.
Resumo:
We study the global bifurcation of nonlinear Sturm-Liouville problems of the form -(pu')' + qu = lambda a(x)f(u), b(0)u(0) - c(0)u' (0) = 0, b(1)u(1) + c(1)u'(1) = 0 which are not linearizable in any neighborhood of the origin. (c) 2005 Published by Elsevier Ltd.
Resumo:
Gaussian processes provide natural non-parametric prior distributions over regression functions. In this paper we consider regression problems where there is noise on the output, and the variance of the noise depends on the inputs. If we assume that the noise is a smooth function of the inputs, then it is natural to model the noise variance using a second Gaussian process, in addition to the Gaussian process governing the noise-free output value. We show that prior uncertainty about the parameters controlling both processes can be handled and that the posterior distribution of the noise rate can be sampled from using Markov chain Monte Carlo methods. Our results on a synthetic data set give a posterior noise variance that well-approximates the true variance.
Resumo:
A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.