936 resultados para Flying Capacitor Multicell Inverter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overview of disciplinary differences taking a web science perspective as a starting point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo della tesi è collaudare un inverter trifase per trazione elettrica stradale al fine di determinarne le specifiche nominali e di massima. Il lavoro è stato organizzato procedendo inizialmente con l’individuazione delle parti principali che concorrono alla formazione del convertitore, studiandone il principio di funzionamento e i diversi valori di tensione e di corrente che ne caratterizzano le prestazioni. Successivamente si è passati al collaudo della parte di potenza del convertitore con l’obiettivo di determinarne le prestazioni in relazione alla massima temperatura consentita di funzionamento. Questo tipo di prova ha richiesto l’individuazione di una sorgente di alimentazione dell’inverter in grado di fornire i picchi di potenza necessari durante la fase di sovraccarico (si tratta di diversi kW per alcune decine di secondi) e contemporaneamente di un carico trifase in grado di assorbire queste potenze senza danneggiarsi. E’ molto importante tenere presente che la prova per la determinazione delle prestazioni nominali dell’inverter, richiede una durata di diverse decine di minuti cioè fin tanto che l’inverter non ha raggiunto l’equilibrio termico e quindi la temperatura non varia apprezzabilmente nel tempo. Allo scopo si è impiegata come sorgente di alimentazione un pacco di batterie Litio-Ioni costituito da 32 celle da 160Ah collegate in serie per una tensione nominale di 105V, mentre come carico si è utilizzato un motore asincrono trifase collegato direttamente in uscita dell’inverter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mostly developed since the Industrial Revolution, the automation of systems and equipment around us is responsible for a technological progress and economic growth without precedents, but also by a relentless energy dependence. Currently, fossil fuels still tend to come as the main energy source, even in developed countries, due to the ease in its extraction and the mastery of the technology needed for its use. However, the perception of its ending availability, as well as the environmental impact of this practice has led to a growing energy production originated from renewable sources. Easy maintenance, coupled with the fact that they are virtually inexhaustible, makes the solar and wind energy very promising solutions. In this context, this work proposes to facilitate energy production from these sources. To this end, in this work the power inverter is studied, which is an equipment responsible for converting DC power available by solar or wind power in traditional AC power. Then it is discussed and designed a new architecture which, in addition to achieve a high energy e - ciency, has also the ability to adapt to the type of conversion desired by the user, namely if he wants to sell electricity to the power grid, be independent of it or bet on a self consumption system. In order to achieve the promised energy e ciency, the projected inverter uses a resonant DC-DC converter, whose architecture signi cantly decreases the energy dissipated in the conversion, allowing a higher power density. The adaptability of the equipment is provided by an adaptive control algorithm, responsible for assessing its behavior on every iteration and making the necessary changes to achieve maximum stability throughout the process. To evaluate the functioning of the proposed architecture, a simulation is presented using the PLECS simulation software.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the diversity of henipaviruses and related viruses is important in determining the viral ecology within flying-fox populations and assessing the potential threat posed by these agents. This study sought to identify the abundance and diversity of previously unknown paramyxoviruses (UPVs) in Australian flying-fox species (Pteropus alecto, Pteropus scapulatus, Pteropus poliocephalus and Pteropus conspicillatus) and in the Christmas Island species Pteropus melanotus natalis. Using a degenerative reverse transcription-PCR specific for the L gene of known species of the genus Henipavirus and two closely related paramyxovirus genera Respirovirus and Morbillivirus, we identified an abundance and diversity of previously UPVs, with a representative 31 UPVs clustering in eight distinct groups (100 UPVs/495 samples). No new henipaviruses were identified. The findings were consistent with a hypothesis of co-evolution of paramyxoviruses and their flying-fox hosts. Quantification of the degree of co-speciation between host and virus (beyond the scope of this study) would strengthen this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the photovoltaic generation has had greater insertion in the energy mix of the most developed countries, growing at annual rates of over 30%. The pressure for the reduction of pollutant emissions, diversification of the energy mix and the drop in prices are the main factors driving this growth. Grid tied systems plays an important role in alleviating the energy crisis and diversification of energy sources. Among the grid tied systems, building integrated photovoltaic systems suffers from partial shading of the photovoltaic modules and consequently the energy yield is reduced. In such cases, classical forms of modules connection do not produce good results and new techniques have been developed to increase the amount of energy produced by a set of modules. In the parallel connection technique of photovoltaic modules, a high voltage gain DC-DC converter is required, which is relatively complex to build with high efficiency. The current-fed isolated converters explored in this work have some desirable characteristics for this type of application, such as: low input current ripple and input voltage ripple, high voltage gain, galvanic isolation, feature high power capacity and it achieve soft switching in a wide operating range. This study presents contributions to the study of a high gain and high efficiency DC-DC converter for use in a parallel system of photovoltaic generation, being possible the use in a microinverter or with central inverter. The main contributions of this work are: analysis of the active clamping circuit operation proposing that the clamp capacitor connection must be done on the negative node of the power supply to reduce the input current ripple and thus reduce the filter requirements; use of a voltage doubler in the output rectifier to reduce the number of components and to extend the gain of the converter; detailed study of the converter components in order to raise the efficiency; obtaining the AC equivalent model and control system design. As a result, a DC-DC converter with high gain, high efficiency and without electrolytic capacitors in the power stage was developed. In the final part of this work the DC-DC converter operation connected to an inverter is presented. Besides, the DC bus controller is designed and are implemented two maximum power point tracking algorithms. Experimental results of full system operation connected to an emulator and subsequently to a real photovoltaic module are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage source inverter (VSI) and current voltage source inverter (CSI) are widely used in industrial application. But the traditional VSIs and CSIs have one common problem: can’t boost or buck the voltage come from battery, which make them impossible to be used alone in Hybrid Electric Vehicle (HEV/EV) motor drive application, other issue is the traditional inverter need to add the dead-band time into the control sequence, but it will cause the output waveform distortion. This report presents an impedance source (Z-source network) topology to overcome these problems, it can use one stage instead of two stages (VSI or CSI + boost converter) to buck/boost the voltage come from battery in inverter system. Therefore, the Z-source topology hardware design can reduce switching element, entire system size and weight, minimize the system cost and increase the system efficiency. Also, a modified space vector pulse-width modulation (SVPWM) control method has been selected with the Z-source network together to achieve the best efficiency and lower total harmonic distortion (THD) at different modulation indexes. Finally, the Z-source inverter controlling will modulate under two control sequences: sinusoidal pulse width modulation (SPWM) and SVPWM, and their output voltage, ripple and THD will be compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through modelling activity, experimental campaigns, test bench and on-field validation, a complete powertrain for a BEV has been designed, assembled and used in a motorsport competition. The activity can be split in three main subjects, representing the three key components of an BEV vehicle. First of all a model of the entire powertrain has been developed in order to understand how the various design choices will influence the race lap-time. The data obtained was then used to design, build and test a first battery pack. After bench tests and track tests, it was understood that by using all the cell charac-teristics, without breaking the rules limitations, higher energy and power densities could have been achieved. An updated battery pack was then designed, produced and raced with at Motostudent 2018 re-sulting in a third place at debut. The second topic of this PhD was the design of novel inverter topologies. Three inverters have been de-signed, two of them using Gallium Nitride devices, a promising semiconductor technology that can achieve high switching speeds while maintaining low switching losses. High switching frequency is crucial to reduce the DC-Bus capacitor and then increase the power density of 3 phase inverters. The third in-verter uses classic Silicon devices but employs a ZVS (Zero Voltage Switching) topology. Despite the in-creased complexity of both the hardware and the control software, it can offer reduced switching losses by using conventional and established silicon mosfet technology. Finally, the mechanical parts of a three phase permanent magnet motor have been designed with the aim to employ it in UniBo Motorsport’s 2020 Formula Student car.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo del lavoro è stato progettare una scheda di controllo in grado di concedere una buona flessibilità per il controllo di azionamenti elettrici, capace di interfacciarsi con configurazioni multi-livello, multifase e dual-motor. La progettazione è stata sviluppata con supporto di CAD elettronici commerciali. La scheda presenta tre parti fondamentali. Due unità di controllo identiche per permettere l’interfacciamento con più configurazioni, nelle quali sono realizzate tutte le funzioni di controllo, ed un’unità chiamata PL2 per la rielaborazione dati di tipologia unicamente automobilistica. E’ stato inoltre realizzato l’interfacciamento e l’assemblaggio con altre due schede elettroniche dedite all’attuazione dei segnali di controllo e alla gestione e rielaborazione dei segnali di veicolo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-phase electrical drives are potential candidates for the employment in innovative electric vehicle powertrains, in response to the request for high efficiency and reliability of this type of application. In addition to the multi-phase technology, in the last decades also, multilevel technology has been developed. These two technologies are somewhat complementary since both allow increasing the power rating of the system without increasing the current and voltage ratings of the single power switches of the inverter. In this thesis, some different topics concerning the inverter, the motor and the fault diagnosis of an electric vehicle powertrain are addressed. In particular, the attention is focused on multi-phase and multilevel technologies and their potential advantages with respect to traditional technologies. First of all, the mathematical models of two multi-phase machines, a five-phase induction machine and an asymmetrical six-phase permanent magnet synchronous machines are developed using the Vector Space Decomposition approach. Then, a new modulation technique for multi-phase multilevel T-type inverters, which solves the voltage balancing problem of the DC-link capacitors, ensuring flexible management of the capacitor voltages, is developed. The technique is based on the proper selection of the zero-sequence component of the modulating signals. Subsequently, a diagnostic technique for detecting the state of health of the rotor magnets in a six-phase permanent magnet synchronous machine is established. The technique is based on analysing the electromotive force induced in the stator windings by the rotor magnets. Furthermore, an innovative algorithm able to extend the linear modulation region for five-phase inverters, taking advantage of the multiple degrees of freedom available in multi-phase systems is presented. Finally, the mathematical model of an eighteen-phase squirrel cage induction motor is defined. This activity aims to develop a motor drive able to change the number of poles of the machine during the machine operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.