934 resultados para Finite volume method
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
Tetrachloroethene (PCE) and trichloroethene (TCE) form dense non-aqueous phase liquids (DNAPLs), which are persistent groundwater contaminants. DNAPL dissolution can be "bioenhanced" via dissolved contaminant biodegradation at the DNAPL-water interface. This research hypothesized that: (1) competitive interactions between different dehalorespiring strains can significantly impact the bioenhancement effect, and extent of PCE dechlorination; and (2) hydrodynamics will affect the outcome of competition and the potential for bioenhancement and detoxification. A two-dimensional coupled flowtransport model was developed, with a DNAPL pool source and multiple microbial species. In the scenario presented, Dehalococcoides mccartyi 195 competes with Desulfuromonas michiganensis for the electron acceptors PCE and TCE. Simulations under biostimulation and low velocity (vx) conditions suggest that the bioenhancement with Dsm. michiganensis alone was modestly increased by Dhc. mccartyi 195. However, the presence of Dhc. mccartyi 195 enhanced the extent of PCE transformation. Hydrodynamic conditions impacted the results by changing the dominant population under low and high vx conditions.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
Chronicwounds fail to proceed through an orderly process to produce anatomic and functional integrity and are a significant socioeconomic problem. There is much debate about the best way to treat these wounds. In this thesis we review earlier mathematical models of angiogenesis and wound healing. Many of these models assume a chemotactic response of endothelial cells, the primary cell type involved in angiogenesis. Modelling this chemotactic response leads to a system of advection-dominated partial differential equations and we review numerical methods to solve these equations and argue that the finite volume method with flux limiting is best-suited to these problems. One treatment of chronic wounds that is shrouded with controversy is hyperbaric oxygen therapy (HBOT). There is currently no conclusive data showing that HBOT can assist chronic wound healing, but there has been some clinical success. In this thesis we use several mathematical models of wound healing to investigate the use of hyperbaric oxygen therapy to assist the healing process - a novel threespecies model and a more complex six-species model. The second model accounts formore of the biological phenomena but does not lend itself tomathematical analysis. Bothmodels are then used tomake predictions about the efficacy of hyperbaric oxygen therapy and the optimal treatment protocol. Based on our modelling, we are able to make several predictions including that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds, treatment should continue until healing is complete and finding the right protocol for an individual patient is crucial if HBOT is to be effective. Analysis of the models allows us to derive constraints for the range of HBOT protocols that will stimulate healing, which enables us to predict which patients are more likely to have a positive response to HBOT and thus has the potential to assist in improving both the success rate and thus the cost-effectiveness of this therapy.
Resumo:
In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.
Resumo:
A model for drug diffusion from a spherical polymeric drug delivery device is considered. The model contains two key features. The first is that solvent diffuses into the polymer, which then transitions from a glassy to a rubbery state. The interface between the two states of polymer is modelled as a moving boundary, whose speed is governed by a kinetic law; the same moving boundary problem arises in the one-phase limit of a Stefan problem with kinetic undercooling. The second feature is that drug diffuses only through the rubbery region, with a nonlinear diffusion coefficient that depends on the concentration of solvent. We analyse the model using both formal asymptotics and numerical computation, the latter by applying a front-fixing scheme with a finite volume method. Previous results are extended and comparisons are made with linear models that work well under certain parameter regimes. Finally, a model for a multi-layered drug delivery device is suggested, which allows for more flexible control of drug release.
Resumo:
We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.
Resumo:
Natural convection flow in a two-dimensional fluid saturated porous enclosure with localized heating from below, symmetrical cooling from the sides and the top and rest of the bottom walls are insulated, has been investigated numerically. Darcy’s law for porous media along with the energy equation based on the 1st law of thermodynamics has been considered. Implicit finite volume method with TDMA solver is used to solve the governing equations. Localized heating is simulated by a centrally located isothermal heat source on the bottom wall, and four different values of the dimensionless heat source length, 1/5, 2/5, 3/5 and 4/5 are considered. The effect of heat source length and the Rayleigh number on streamlines and isotherms are presented, as well as the variation of the local rate of heat transfer in terms of the local Nusselt number from the heated wall. Finally, the average Nusselt number at the heated part of the bottom wall has been shown against Rayleigh number for the non-dimensional heat source length.
Resumo:
Natural convection in a triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base is investigated numerically. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper surface is cooled and the bottom surface is heated, the air flow in the enclosure is potentially unstable to Rayleigh Benard instability. It is revealed that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage and a steady stage. It is also found that the flow inside the enclosure strongly depends on the governing parameters, Rayleigh number and aspect ratio. The asymmetric behaviour of the flow about the geometric centre line is discussed in detailed. The heat transfer through the roof and the ceiling as a form of Nusselt number is also reported in this study.
Resumo:
Natural convection in a triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base is investigated numerically. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper surface is cooled and the bottom surface is heated, the air flow in the enclosure is potentially unstable to Rayleigh Benard instability. It is revealed that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage and a steady stage. It is also found that the flow inside the enclosure strongly depends on the governing parameters; Rayleigh number and aspect ratio. The asymmetric behaviour of the flow about the geometric centre line is discussed in detailed. The heat transfer through the roof and the ceiling as a form of Nusselt number is also reported in this study.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.