901 resultados para Filter-rectify-filter-model
Resumo:
Riparian ecology plays an important part in the filtration of sediments from upland agricultural lands. The focus of this work makes use of multispectral high spatial resolution remote sensing imagery (Quickbird by Digital Globe) and geographic information systems (GIS) to characterize significant riparian attributes in the USDA’s experimental watershed, Goodwin Creek, located in northern Mississippi. Significant riparian filter characteristics include the width of the strip, vegetation properties, soil properties, topography, and upland land use practices. The land use and vegetation classes are extracted from the remotely sensed image with a supervised maximum likelihood classification algorithm. Accuracy assessments resulted in an acceptable overall accuracy of 84 percent. In addition to sensing riparian vegetation characteristics, this work addresses the issue of concentrated flow bypassing a riparian filter. Results indicate that Quickbird multispectral remote sensing and GIS data are capable of determining riparian impact on filtering sediment. Quickbird imagery is a practical solution for land managers to monitor the effectiveness of riparian filtration in an agricultural watershed.
Resumo:
Die Grundbegriffe Wölfflins lassen sich mit Hilfe digitaler Algorithmen nachmodellieren. Welches Wissen wird damit gewonnen? Auch Wölfflin hat auf mediale Veränderungen reagiert, indem er die Doppel-Projektion von Dias in den binären Differenzen der Grundbegriffe nachbildete. Sie lesen der Projektion zweier Bilder eine historische Differenz aus, die für die Disziplin der Kunstgeschichte grundlegend ist. Ein digitale Nachbildung dieser Differenz wäre tautologisch: sie würde ein gewusstes Wissen wiederholen. Fruchtbar wird der Einsatz digitaler Algorithmen dann, wenn sie nicht nur etwas bekanntes abbilden, sondern wenn man fragt, zu welcher "methodischen Grenzerweiterung" sie beitragen könnten.
Resumo:
Skull-stripping (or brain extraction) is an important pre-processing step in neuroimage analysis. This document describes a skull-stripping filter implemented using the Insight Toolkit ITK, which we named itk::StripTsImageFilter. It is a composite filter based on existing ITK classes. The filter has been implemented with usability, robustness, speed and versatility in mind, rather than accuracy. This makes it useful for many pre-processing tasks in neuroimage analysis. This paper is accompanied by the source code, input data and a testing environment.
Resumo:
OBJECTIVES The purpose of this study was to investigate the survival effects of inferior vena cava filters in patients with venous thromboembolism (VTE) who had a significant bleeding risk. BACKGROUND The effectiveness of inferior vena cava filter use among patients with acute symptomatic VTE and known significant bleeding risk remains unclear. METHODS In this prospective cohort study of patients with acute VTE identified from the RIETE (Computerized Registry of Patients With Venous Thromboembolism), we assessed the association between inferior vena cava filter insertion for known significant bleeding risk and the outcomes of all-cause mortality, pulmonary embolism (PE)-related mortality, and VTE rates through 30 days after the initiation of VTE treatment. Propensity score matching was used to adjust for the likelihood of receiving a filter. RESULTS Of the 40,142 eligible patients who had acute symptomatic VTE, 371 underwent filter placement because of known significant bleeding risk. A total of 344 patients treated with a filter were matched with 344 patients treated without a filter. Propensity score-matched pairs showed a nonsignificant trend toward lower risk of all-cause death for filter insertion compared with no insertion (6.6% vs. 10.2%; p = 0.12). The risk-adjusted PE-related mortality rate was lower for filter insertion than no insertion (1.7% vs. 4.9%; p = 0.03). Risk-adjusted recurrent VTE rates were higher for filter insertion than for no insertion (6.1% vs. 0.6%; p < 0.001). CONCLUSIONS In patients presenting with VTE and with a significant bleeding risk, inferior vena cava filter insertion compared with anticoagulant therapy was associated with a lower risk of PE-related death and a higher risk of recurrent VTE. However, study design limitations do not imply a causal relationship between filter insertion and outcome.
Resumo:
A state-of-the-art inverse model, CarbonTracker Data Assimilation Shell (CTDAS), was used to optimize estimates of methane (CH4) surface fluxes using atmospheric observations of CH4 as a constraint. The model consists of the latest version of the TM5 atmospheric chemistry-transport model and an ensemble Kalman filter based data assimilation system. The model was constrained by atmospheric methane surface concentrations, obtained from the World Data Centre for Greenhouse Gases (WDCGG). Prior methane emissions were specified for five sources: biosphere, anthropogenic, fire, termites and ocean, of which bio-sphere and anthropogenic emissions were optimized. Atmospheric CH 4 mole fractions for 2007 from northern Finland calculated from prior and optimized emissions were compared with observations. It was found that the root mean squared errors of the posterior esti - mates were more than halved. Furthermore, inclusion of NOAA observations of CH 4 from weekly discrete air samples collected at Pallas improved agreement between posterior CH 4 mole fraction estimates and continuous observations, and resulted in reducing optimized biosphere emissions and their uncertainties in northern Finland.
Resumo:
Von H. Barfod
Resumo:
The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.