970 resultados para Film-Substrate System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human colon tumor cell line, LS174T, has been shown to have four major components of the drug metabolizing system; cytochrome b$\sb5$ reductase, cytochrome b$\sb5$, cytochrome P450 reductase and cytochrome P450, by activity measurements, spectral studies and antibody cross-reactivity. Cytochrome P450IA1 is induced by benzanthracene in these cells as shown by activity with the specific substrate, ethoxyresorufin, cross-reactivity with rabbit antibodies to rat IA1, and by a hybridizing band on a Northern blot to a rat IA1 probe.^ Further, this system has proven responsive to various inducers and conditions of growth. The enzyme activities were found stable over limited cell passages with control values of 0.03 and 0.13 $\mu$mol/min/mg protein for NADPH and NADH cytochrome c (cyt c) reducing activity, 0.05 nmol cyt b$\sb5$ per milligram and 0.013 nmol cytochrome P450 per milligram of microsomal protein. Phenobarbital/hydrocortisone treatment showed a consistent, but not always significant increase in the NADPH and NADH cyt c reducing activity and benzanthracene treatment an increase in the NADH cyt c reducing activity. Delta-aminolevulinic acid (0.5mM) caused a significant decrease in the specific activity of all enzyme contents and activities tested.^ Finally, the cytochrome b$\sb5$ to cytochrome P450, by the coordinate induction of the cytochrome b$\sb5$ pathway by P450 inducers, by the high ratio of NADH to NADPH ethoxycoumarin deethylase activity in uninduced cell microsomes, and by the increase in NADH and NADPH ethoxycoumarin deethylase activity when the microsomes were treated with potassium cyanide, a desaturase inhibitor. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of the interaction of plant-derived N-alkylamides (NAAs) and the mammalian endocannabinoid system (ECS) and the existence of a plant endogenous N-acylethanolamine signaling system have led to the re-evaluation of this group of compounds. Herein, the isolation of seven NAAs and the assessment of their effects on major protein targets in the ECS network are reported. Four NAAs, octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid isobutylamide (1), octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid 2'-methylbutylamide (2), hexadeca-2E,4E,9Z-triene-12,14-diynoic acid isobutylamide (3), and hexadeca-2E,4E,9,12-tetraenoic acid 2'-methylbutylamide (4), were identified from Heliopsis helianthoides var. scabra. Compounds 2-4 are new natural products, while 1 was isolated for the first time from this species. The previously described macamides, N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (5), N-benzyl-(9Z,12Z,15Z)-octadecatrienamide (6), and N-benzyl-(9Z,12Z)-octadecadienamide (7), were isolated from Lepidium meyenii (Maca). N-Methylbutylamide 4 and N-benzylamide 7 showed submicromolar and selective binding affinities for the cannabinoid CB1 receptor (Ki values of 0.31 and 0.48 μM, respectively). Notably, compound 7 also exhibited weak fatty acid amide hydrolase (FAAH) inhibition (IC50 = 4 μM) and a potent inhibition of anandamide cellular uptake (IC50 = 0.67 μM) that was stronger than the inhibition obtained with the controls OMDM-2 and UCM707. The pronounced ECS polypharmacology of compound 7 highlights the potential involvement of the arachidonoyl-mimicking 9Z,12Z double-bond system in the linoleoyl group for the overall cannabimimetic action of NAAs. This study provides additional strong evidence of the endocannabinoid substrate mimicking of plant-derived NAAs and uncovers a direct and indirect cannabimimetic action of the Peruvian Maca root.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity, and it has been shown to activate coagulation factors. Here we studied the effects of MASP-1 on clot formation in whole blood (WB) and platelet-poor plasma (PPP) by thrombelastography and further elucidated the underlying mechanism. Cleavage of prothrombin by MASP-1 was investigated by SDS-PAGE and N-terminal sequencing of cleavage products. Addition of MASP-1 or thrombin to WB and PPP shortened the clotting time and clot formation time significantly compared to recalcified-only samples. The combination of MASP-1 and thrombin had additive effects. In a purified system, MASP-1 was able to induce clotting only in presence of prothrombin. Analysis of MASP-1-digested prothrombin confirmed that MASP-1 cleaves prothrombin at three cleavage sites. In conclusion, we have shown that MASP-1 is able to induce and promote clot formation measured in a global setting using the technique of thrombelastography. We further confirmed that MASP-1-induced clotting is dependent on prothrombin. Finally, we have demonstrated that MASP-1 cleaves prothrombin and identified its cleavage sites, suggesting that MASP-1 gives rise to an alternative active form of thrombin by cleaving at the cleavage site R393.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The widespread dietary plant sesquiterpene hydrocarbon β-caryophyllene (1) is a CB2 cannabinoid receptor-specific agonist showing anti-inflammatory and analgesic effects in vivo. Structural insights into the pharmacophore of this hydrocarbon, which lacks functional groups other than double bonds, are missing. A structure-activity study provided evidence for the existence of a well-defined sesquiterpene hydrocarbon binding site in CB2 receptors, highlighting its exquisite sensitivity to modifications of the strained endocyclic double bond of 1. While most changes on this element were detrimental for activity, ring-opening cross metathesis of 1 with ethyl acrylate followed by amide functionalization generated a series of new monocyclic amides (11a, 11b, 11c) that not only retained the CB2 receptor functional agonism of 1 but also reversibly inhibited fatty acid amide hydrolase (FAAH), the major endocannabinoid degrading enzyme, without affecting monoacylglycerol lipase (MAGL) and α,β hydrolases 6 and 12. Intriguingly, further modification of this monocyclic scaffold generated the FAAH- and endocannabinoid substrate-specific cyclooxygenase-2 (COX-2) dual inhibitors 11e and 11f, which are probes with a novel pharmacological profile. Our study shows that by removing the conformational constraints induced by the medium-sized ring and by introducing functional groups in the sesquiterpene hydrocarbon 1, a new scaffold with pronounced polypharmacological features within the endocannabinoid system could be generated. The structural and functional repertoire of cannabimimetics and their yet poorly understood intrinsic promiscuity may be exploited to generate novel probes and ultimately more effective drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scan von Monochrom-Mikroform

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vorbesitzer: Abraham Merzbacher;

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vorbesitzer: Abraham Merzbacher;

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vorbesitzer: Israel Aron; Coppel Monsieur; Lehman Hertz;

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vorbesitzer: Meyer Amsil;

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vorbesitzer: Aaron Ben-Moses Fuld;