932 resultados para Fibroblast growth factor
Resumo:
The purpose of this study was to determine whether the prevalence and severity of gingival overgrowth in renal transplant recipients concomitantly treated with cyclosporin and a calcium channel blocker was associated with functional polymorphisms within the signal sequence of the transforming growth factor-(TGF)beta1 gene.
Resumo:
The relative sensitivity of neoplastic cells to DNA damaging agents is a key factor in cancer therapy. In this paper, we show that pretreatment of Burkitt's lymphoma cell lines expressing the c-met protooncogene with hepatocyte growth factor (HGF) protects them from death induced by DNA damaging agents commonly used in tumour therapy. This protection was observed in assays based on morphological assessment of apoptotic cells and DNA fragmentation assays. The protection was dose- and time-dependent — maximal protection requiring pre-incubation with 100 ng/ml HGF for 48 h. Western blotting analysis and flow cytometric studies revealed that HGF inhibited doxorubicin- and etoposide-induced decreases in the levels of the anti-apoptotic proteins Bcl-XL, and to a lesser extent Bcl-2, without inducing changes in the pro-apoptotic Bax protein. Overall, these studies suggest that the accumulation of HGF within the microenvironment of neoplastic cells may contribute to the development of a chemoresistant phenotype.
Resumo:
The immunolocalization and gene expression of vascular endothelial growth factor (VEGF) and its cognate tyrosine kinase receptors, Flt-1 and KDR, has been studied in ocular melanomas and retinoblastomas using in situ hybridization and immunohistochemistry. Tumour-related alterations in VEGF/VEGF-receptor expression have also been examined in separate and uninvolved iris, retina and choroid of the same eyes. Although VEGF immunoreactivity in the normal retina was virtually absent, low-level VEGF expression was evident in the ganglion cell-bodies, Müller cells and in a distinct population of amacrine cells. VEGF gene expression was absent in the iris and choroid of normal eyes. In tumour-bearing eyes, high levels of VEGF protein and gene expression were observed within the vascularized regions of the tumours, while the adjacent retina and choroid showed increased VEGF levels when compared with normals. Flt-1 and KDR gene expression and immunolocalization occurred in VEGF-expressing ganglion, Müller and amacrine cells in normal eyes. Within the intra-ocular tumours, VEGF-receptor gene expression and protein was evident in the endothelial cells and also in cells close to the vessels, while in the adjacent retina, Flt-1 and KDR levels were elevated over normal, especially in the blood vessels. Flt-1 and KDR were both observed at elevated levels in the choroid and iris blood vessels. This study suggests that VEGF, Flt-1 and KDR are expressed by neural, glial and vascular elements within normal human retina. Intra-ocular tumours demonstrate a high level of VEGF and VEGF-receptor expression; within uninvolved, spatially separate retina, choroid and iris in the same eyes, expression is also elevated, especially within the vasculature. Retinal vascular endothelia may respond to high intra-ocular levels of VEGF by increasing expression of their VEGF receptors, a phenomenon which could have relevance to neoplasm-related ocular neovascularization.
Resumo:
The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.