870 resultados para Feed - Cottonseed cake
Resumo:
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ~120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d-1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ~89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d-1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.
Resumo:
A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zea mays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d�1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)�1 d�1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg�1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.
Resumo:
Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency of extreme weather. Projections of climate impacts on feed crops show that there will likely be opportunities for increased productivity as well as considerable threats to crop productivity in different parts of the world over the next 20 to 50 years. On balance, we anticipate substantial risks to the volume, volatility, and quality of animal feed supply chains from climate change. Adaptation strategies and investment informed by high quality research at the interface of crop and animal science will be needed, both to respond to climate change and to meet the increasing demand for animal products expected over the coming decades.
Resumo:
Abstract BACKGROUND Tannins can bind to and precipitate protein by forming insoluble complexes resistant to fermentation and with a positive effect on protein utilisation by ruminants. Three protein types, Rubisco, rapeseed protein and bovine serum albumin (a single high-molecular weight protein), were used to test the effects of increasing concentrations of structurally different condensed tannins on protein solubility/precipitation. RESULTS Protein type (PT) influenced solubility after addition of condensed tannins (P < 0.001) in the order: Rubisco < rapeseed < BSA (P < 0.05). The type of condensed tannin (CT) affected protein solubility (P = 0.001) with a CT × PT interaction (P = 0.001). Mean degree of polymerisation, proportions of cis- versus trans-flavanol subunits or prodelphinidins versus procyanidins among CTs could not explain precipitation capacities. Increasing tannin concentration decreased protein solubility (P < 0.001) with a PT × CT concentration interaction. The proportion of low-molecular weight rapeseed proteins remaining in solution increased with CT concentration but not with Rubisco. CONCLUSIONS Results of this study suggest that PT and CT type are both of importance for protein precipitation but that the CT structures investigated did not allow identification of parameters that contribute most to precipitation. It is possible that the three-dimensional structures of tannins and proteins may be more important factors in tannin–protein interactions. © 2013 Society of Chemical Industry
Resumo:
This review provides an overview of the main scientific outputs of a network (Action) supported by the European Cooperation in Science and Technology (COST) in the field of animal science, namely the COST Action Feed for Health (FA0802). The main aims of the COST Action Feed for Health (FA0802) were: to develop an integrated and collaborative network of research groups that focuses on the roles of feed and animal nutrition in improving animal wellbeing and also the quality, safety and wholesomeness of human foods of animal origin; to examine the consumer concerns and perceptions as regards livestock production systems. The COST Action Feed for Health has addressed these scientific topics during the last four years. From a practical point of view three main scientific fields of achievement can be identified: feed and animal nutrition; food of animal origin quality and functionality and consumers’ perceptions. Finally, the present paper has the scope to provide new ideas and solutions to a range of issues associated with the modern livestock production system.
Resumo:
The Green Feed (GF) system (C-Lock Inc., Rapid City, USA) is used to estimate total daily methane emissions of individual cattle using short-term measurements obtained over several days. Our objective was to compare measurements of methane emission by growing cattle obtained using the GF system with measurements using respiration chambers (RC)or sulphur hexafluoride tracer (SF6). It was hypothesised that estimates of methane emission for individual animals and treatments would be similar for GF compared to RC or SF6 techniques. In experiment 1, maize or grass silage-based diets were fed to four growing Holstein heifers, whilst for experiment 2, four different heifers were fed four haylage treatments. Both experiments were a 4 × 4 Latin square design with 33 day periods. Green Feed measurements of methane emission were obtained over 7 days (days 22–28) and com-pared to subsequent RC measurements over 4 days (days 29–33). For experiment 3, 12growing heifers rotationally grazed three swards for 26 days, with simultaneous GF and SF6 measurements over two 4 day measurement periods (days 15–19 and days 22–26).Overall methane emissions (g/day and g/kg dry matter intake [DMI]) measured using GF in experiments 1 (198 and 26.6, respectively) and 2 (208 and 27.8, respectively) were similar to averages obtained using RC (218 and 28.3, respectively for experiment 1; and 209 and 27.7, respectively, for experiment 2); but there was poor concordance between the two methods (0.1043 for experiments 1 and 2 combined). Overall, methane emissions measured using SF6 were higher (P<0.001) than GF during grazing (186 vs. 164 g/day), but there was significant (P<0.01) concordance between the two methods (0.6017). There were fewer methane measurements by GF under grazing conditions in experiment 3 (1.60/day) com-pared to indoor measurements in experiments 1 (2.11/day) and 2 (2.34/day). Significant treatment effects on methane emission measured using RC and SF6 were not evident for GF measurements, and the ranking for treatments and individual animals differed using the GF system. We conclude that under our conditions of use the GF system was unable to detectsignificant treatment and individual animal differences in methane emissions that were identified using both RC and SF6techniques, in part due to limited numbers and timing ofmeasurements obtained. Our data suggest that successful use of the GF system is reliant on the number and timing of measurements obtained relative to diurnal patterns of methane emission.
Resumo:
The effects of several fat replacement levels (0%, 35%, 50%, 70%, and 100%) by inulin in sponge cake microstructure and physicochemical properties were studied. Oil substitution for inulin decreased significantly (P < 0.05) batter viscosity, giving heterogeneous bubbles size distributions as it was observed by light microscopy. Using confocal laser scanning microscopy the fat was observed to be located at the bubbles’ interface, enabling an optimum crumb cake structure development during baking. Cryo-SEM micrographs of cake crumbs showed a continuous matrix with embedded starch granules and coated with oil; when fat replacement levels increased, starch granules appeared as detached structures. Cakes with fat replacement up to 70% had a high crumb air cell values; they were softer and rated as acceptable by an untrained sensory panel (n = 51). So, the reformulation of a standard sponge cake recipe to obtain a new product with additional health benefits and accepted by consumers is achieved.
Resumo:
The roles of some cake ingredients – oil, a leavening agent, and inulin – in the structure and physicochemical properties of batter and cakes were studied in four different formulations. Oil played an important role in the batter stability, due to its contribution to increasing batter viscosity and occluding air during mixing. The addition of the leavening agent was crucial to the final height and sponginess of the cakes. When inulin was used as a fat replacer, the absence of oil caused a decrease in the stability of the batter, where larger air bubbles were occluded. Inulin dispersed uniformly in the batter could create a competition for water with the flour components: gluten was not properly hydrated and some starch granules were not fully incorporated into the matrix. Thus, the development of a continuous network was disrupted and the cake was shorter and softer; it contained interconnected air cells in the crumb, and was easily crumbled. The structure studies were decisive to understand the physicochemical properties.
Resumo:
Sponge cakes have traditionally been manufactured using multistage mixing methods to enhance potential foam formation by the eggs. Today, use of all-in (single-stage) mixing methods is superseding multistage methods for large-scale batter preparation to reduce costs and production time. In this study, multistage and all-in mixing procedures and three final high-speed mixing times (3, 5, and 15 min) for sponge cake production were tested to optimize a mixing method for pilot-scale research. Mixing for 3 min produced batters with higher relative density values than did longer mixing times. These batters generated well-aerated cakes with high volume and low hardness. In contrast, after 5 and 15 min of high-speed mixing, batters with lower relative density and higher viscosity values were produced. Although higher bubble incorporation and retention were observed, longer mixing times produced better developed gluten networks, which stiffened the batters and inhibited bubble expansion during mixing. As a result, these batters did not expand properly and produced cakes with low volume, dense crumb, and high hardness values. Results for all-in mixing were similar to those for the multistage mixing procedure in terms of the physical properties of batters and cakes (i.e., relative density, elastic moduli, volume, total cell area, hardness, etc.). These results suggest the all-in mixing procedure with a final high-speed mixing time of 3 min is an appropriate mixing method for pilot-scale sponge cake production. The advantages of this method are reduced energy costs and production time.
Resumo:
Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.
Resumo:
The occurrence of aflatoxins (AF) B(1), B(2), G(1), G(2) and cyclopiazonic acid (CPA) in feeds, and AFM(1) and CPA in milk was determined in dairy farms located in the northeastern region of Sao Paulo state, Brazil, between October 2005 and February 2006. AF and CPA determinations were performed by HPLC. AFB(1) was found in 42% of feed at levels or 1.0-26.4 mu g kg(-1) (mean: 7.1 +/- 7.2 mu g kg(-1)). The concentrations of AFM(1) in raw milk varied between 0.010 and 0.645 mu g l(-1) (mean: 0.104 +/- 0.138 mu g l(-1)). Only one sample was above the tolerance limit adopted in Brazil (0.50 mu g l(-1)) for AFM(1) in milk. Regarding CPA in feed, six (12%) samples showed concentrations of 12.5-1533 mu g kg(-1) (mean: 57.6 +/- 48.7 mu g kg(-1)). CPA was detected in only three milk samples (6%) at levels of 6.4, 8.8 and 9.1 mu g l(-1). Concentrations of aflatoxins and CPA in feed and milk were relatively low, although the high frequency of both mycotoxins indicates the necessity to continuously monitor dairy farms to prevent contamination of feed ingredients.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
Drilling fluid`s contact with the productive zone of horizontal or complex wells can reduce well productivity by fluid invasion in the borehole wall. Salted drilling drill-in fluid containing polymers has often been applied in horizontal or complex petroleum wells in the poorly consolidated sandstone reservoirs of the Campos basin, Rio de Janeiro, Brazil. This fluid usually consists of natural polymers such as starch and xanthan gum, which are deposited as a filter cake on the wellbore wall during the drilling. Therefore, the identification of a lift-off mechanism failure, which can be detachment or blistering and pinholing, will enable formulation improvements. increasing the chances of success during filter cake removal in open hole operations. Likewise, knowledge of drill-in drilling fluid adsorption/desorption onto sand can help understand the filter cake-rock adhesion mechanism and consequently filter cake lift-off mechanism failures. The present study aimed to identify the lift-off failure mechanism for this type of fluid filter cake studying adsorption/desorption onto SiO(2) using solutions of natural polymers, lubricants, besides the fluid itself. Ellipsometry was employed to measure this process. The adsorption/desorption studies showed that the adsorbed layer of drilling fluid onto the walls of the rock pores is made up of clusters of polymers, linked by hydrogen bonds, which results in a force of lower cohesion compared to the electrostatic interaction between silica and polymers. Consequently, it was found that the most probable filter cake failure mechanism is rupture (blistering and pinholing), which results in the formation of ducts within the filter cake. (C) 2009 Elsevier B.V. All rights reserved.