931 resultados para Fe-S cluster-containing protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles from terminal alkenyl glucosinolates and, as recent evidence suggests, simple nitriles at the expense of isothiocyanates. From a human health perspective isothiocyanates are the most important because they are major inducers of carcinogen-detoxifying enzymes. Fe2+ is an essential factor in ESP activity, although several recent studies have highlighted discrepancies in the understanding of the ESP-iron interaction. To investigate further the role iron species play in regulating ESP activity, four ESP-containing seedpowders were analyzed for ESP and myrosinase activities, endogenous iron content, and glucosinolate degradation products after the addition of iron species, specific chelators, and reducing agents. For the first time this paper shows the effect of these additions on the hydrolysis of individual glucosinolates that constitute the total pool. Aged seeds and 3-day seedlings were also tested to investigate the effects of seed storage and early plant development on iron levels and ESP activity. The four ESP-containing plant systems tested gave two distinctive responses, thus providing strong evidence that ESPs vary markedly in their Fe2+ requirement for activity. The results also indicated that reduction of ferric to ferrous iron drives variations in ESP activity during early plant development. The reverse oxidation reaction provided a convincing explanation for the loss of ESP activity during seed storage. Aged seeds produced seedlings with substantially lower ESP activity, and there was a concomitant loss in germination rate. It was concluded that manipulation of endogenous iron levels of ESP-containing plants could increase the conversion of glucosinolates to isothiocyanates and enhance potential health benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of tyrosinase, laccase and transglutaminase (TG) were studied in different meat protein systems. The study was focused on the effects of the enzymes on the gel formation properties of myofibrils, and on the textural and water-holding properties of the heated meat systems. The cross-linking efficiency of a novel Trichoderma reesei tyrosinase was compared to that of the commercial Agaricus bisporus tyrosinase. Trichoderma tyrosinase was found to be superior compared to the Agaricus enzyme in its protein cross-linking efficiency and in the incorporation of a small molecule into a complex proteinaceous substrate. Tyrosinase, laccase and TG all polymerised myofibrillar proteins, but laccase was also found to cause protein fragmentation. A positive connection between covalent cross-link and gel formation was observed with tyrosinase and TG. Laccase was able to increase the gel formation only slightly. With an excessive laccase dosage the gel formation declined due to protein fragmentation. Tyrosinase, laccase and TG had different effects on the texture and water-holding of the heated chicken breast meat homogenates. Tyrosinase improved the firmness of the homogenate gels free of phosphate and with a low amount of meat. TG improved the firmness of all studied homogenates. Laccase weakened the gel firmness of the low-meat, low-salt and low-salt/phosphate homogenates and maintained the firmness on the control level in the homogenate free of phosphate. Tyrosinase was the only enzyme capable of reducing the weight loss in the homogenates containing a low amount of meat and a low amount of NaCl. TG was the only enzyme that could positively affect the firmness of the homogenate gel containing both low NaCl and phosphate amounts. In pilot scale the test products were made of coarsely ground chicken breast fillet with a moderate amount of salt. Increasining the amount of meat, salt and TG contents favoured the development of firmness of the test products. The evaporation loss decreased slightly along with increasing TG and NaCl amounts in the experimental conditions used, indicating a positive interaction between these two factors. In this work it was shown that tyrosinase, laccase and TG affected the same myofibrillar proteins, i.e. myosin and troponin T. However, these enzymes had distinguishable effects on the gel formation of a myofibril system as well as on the textural and water-holding properties of the finely ground meat homogenates, reflecting distinctions at least in the reaction mechanisms and target amino acid availability in the protein substrates for these enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamics of tie binding of calcium and magnesium ions to a calcium binding protein from Entamoeba histolytica was investigated by isothermal titration calorimetry (ITC) in 20 mM MOPS buffer (pH 7.0) at 20 degrees C. Enthalpy titration curves of calcium show the presence of four Ca2+ binding sites, There exist two low-affinity sites for Ca2+, both of which are exothermic in nature and with positive cooperative interaction between them. Two other high affinity sites for Ca2+ exist of which one is endothermic and the other exothermic, again with positive cooperative interaction. The binding constants for Ca2+ at the four sites have been verified by a competitive binding assay, where CaBP competes with a chromophoric chelator 5, 5'-Br-2 BAPTA to bind Ca2+ and a Ca2+ titration employing intrinsic tyrosine fluorescence of the protein, The enthalpy of titration of magnesium in the absence of calcium is single site and endothermic in nature. In the case of the titrations performed using protein presaturated with magnesium, the amount of heat produced is altered. Further, the interaction between the high-affinity sites changes to negative cooperativity. No exchange of heat was observed throughout the addition of magnesium in the presence of 1 mM calcium, Titrations performed on a cleaved peptide comprising the N-terminus and the central linker show the existence of two Ca2+ specific sites, These results indicate that this CaBP has one high-affinity Ca-Mg site, one high-affinity Ca-specific site, and two low-affinity Ca-specific sites. The thermodynamic parameters of the binding of these metal ions were used to elucidate the energetics at the individual site(s) and the interactions involved therein at various concentrations of the denaturant, guanidine hydrochloride, ranging from 0.05 to 6.5 M. Unfolding of the protein was also monitored by titration calorimetry as a function of the concentration of the denaturant. These data show that at a GdnHCl concentration of 0.25 M the binding affinity for the Mg2+ ion is lost and there are only two sites which can bind to Ca2+, with substantial loss cooperativity. At concentrations beyond 2.5 M GdnHCl, at which the unfolding of the tertiary structure of this protein is observed by near UV CD spectroscopy, the binding of Ca2+ ions is lost. We thus show that the domain containing the two low-affinity sites is the first to unfold in the presence of GdnHCl. Control experiments with change in ionic strength by addition of KCI in the range 0.25-1 M show the existence of four sites with altered ion binding parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and phosphorylation of protein factor(s) that bind to the positivecis-acting element (−69 to −98 nt) of the CYP2B1/B2 gene have been examinedin vivoin the rat. Treatment of rats with cycloheximide, a protein synthetic inhibitor, suppresses basal as well as phenobarbitone-induced levels of CYP2B1/B2 mRNA and its run-on transcription. Under these conditions, complex formation of the nuclear extract with the positive element is also inhibited, as judged by gel shift assays. Treatment of rats with 2-aminopurine, a general protein kinase inhibitor, blocks the phenobarbitone-mediated increase in CYP2B1/B2 mRNA, cell-free transcription of a minigene construct containing the positive element, pP450e179DNA, and binding of nuclear proteins to the positive element. Treatment of rats with okadaic acid, a protein phosphatase inhibitor, mimics the effects of phenobarbitone, but only partially. Thus, both phenobarbitone and okadaic acid individually enhance binding of the nuclear protein(s) to the positive element, cell-free transcription of the minigene construct, and phosphorylation of the not, vert, similar26- and 94-kDa proteins binding to the positive element. But unlike phenobarbitone, okadaic acid is not an inducer of CYP2B1/B2 mRNA or its run-on transcription. Thus, phenobarbitone-responsive positive element interactions constitute only a minimal requirement, and okadaic acid is perhaps not able to bring about the total requirement for activation of CYP2B1/B2 gene transcription that should include interaction between the minimal promoter and further upstream elements. An intriguing feature is the antagonistic effect of okadaic acid on phenobarbitone-mediated effects on CYP2B1/B2 mRNA levels, cell-free and run-on transcription, and nuclear protein binding to the positive element. The reason for this antagonism is not clear. It is concluded that phenobarbitone treatment enhancesin vivothe synthesis and phosphorylation of protein factors binding to the positive element and these constitute a minimal requirement for the transcriptional activation of the CYP2B1/B2 gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (L-alanine-[2,3-epoxycyclohexano-4]-L-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of L-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize L-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to L-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis three icosahedral lipid-containing double-stranded (ds) deoxyribonucleic acid (DNA) bacteriophages have been studied: PRD1, Bam35 and P23-77. The work focuses on the entry, exit and structure of the viruses. PRD1 is the type member of the Tectiviridae family, infecting a variety of Gram-negative bacteria. The PRD1 receptor binding complex, consisting of the penton protein P31, the spike protein P5 and the receptor binding protein P2 recognizes a specific receptor on the host surface. In this study we found that the transmembrane protein P16 has an important stabilization function as the fourth member of the receptor binding complex and protein P16 may have a role in the formation of a tubular membrane structure, which is needed in the ejection of the genome into the cell. Phage Bam35 (Tectiviridae), which infects Gram-positive hosts, has been earlier found to resemble PRD1 in morphology and genome organization The uncharacterized early and late events in the Bam35 life cycle were studied by electrochemical methods. Physiological changes in the beginning of the infection were found to be similar in both lysogenic and nonlysogenic cell lines, Bam35 inducing a temporal decrease of membrane voltage and K+ efflux. At the end of the infection cycle physiological changes were observed only in the nonlysogenic cell line. The strong K+ efflux 40 min after infection and the induced premature cell lysis propose that Bam35 has a similar holin-endolysin lysis system to that of PRD1. Thermophilic icosahedral dsDNA Thermus phages P23-65H, P23-72 and P23-77 have been proposed to belong to the Tectiviridae family. In this study these phages were compared to each other. Analysis of structural protein patterns and stability revealed these phages to be very similar but not identical. The most stable of the studied viruses, P23-77, was further analyzed in more detail. Cryo-electron microscopy and three-dimensional image reconstruction was used to determine the structure of virus to 14 Å resolution. Results of thin layer chromatography for neutral lipids together with analysis of the three dimensional reconstruction of P23-77 virus particle revealed the presence of an internal lipid membrane. The overall capsid architecture of P23-77 is similar to PRD1 and Bam35, but most closely it resembles the structure of the capsid of archaeal virus SH1. This complicates the classification of dsDNA, internal lipid-containing icosahedral viruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we used electro-spray ionization mass-spectrometry to determine phospholipid class and molecular species compositions in bacteriophages PM2, PRD1, Bam35 and phi6 as well as their hosts. To obtain compositional data of the individual leaflets, phospholipid transbilayer distribution in the viral membranes was studied. We found that 1) the membranes of all studied bacteriophage are enriched in PG as compared to the host membranes, 2) molecular species compositions in the phage and host membranes are similar, and 3) phospholipids in the viral membranes are distributed asymmetrically with phosphatidylglycerol enriched in the outer leaflet and phosphatidylethanolamine in the inner one (except Bam35). Alternative models for selective incorporation of phospholipids to phages and for the origins of the asymmetric phospholipid transbilayer distribution are discussed. Notably, the present data are also useful when constructing high resolution structural models of bacteriophages, since diffraction methods cannot provide a detailed structure of the membrane due to high motility of the lipids and lack of symmetric organization of membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigated the basis for availability of iron (Fe) and zinc (Zn) content in different banana fruits grown in Uganda and Australia. Rather than micronutrient content levels in different banana cultivar, genotype and environment interactions explained much of the differences. Such information should provide important insights for future developments in the biofortification of banana. Bananas consumed in Uganda did not contain sufficient levels of Fe and Zn that meet the nutrient requirements for vulnerable groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.