867 resultados para Fault Tree
Resumo:
Summary
Resumo:
Summary
Resumo:
ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.
Resumo:
The Monte Perdido thrust fault (southern Pyrenees) consists of a 6-m-thick interval of intensely deformed clay-bearing rocks. The fault zone is affected by a pervasive pressure solution seam and numerous shear surfaces. Calcite extensional-shear veins are present along the shear surfaces. The angular relationships between the two structures indicate that shear surfaces developed at a high angle (70°) to the local principal maximum stress axis r1. Two main stages of deformation are present. The first stage corresponds to the development of calcite shear veins by a combination of shear surface reactivation and extensional mode I rupture. The second stage of deformation corresponds to chlorite precipitation along the previously reactivated shear surfaces. The pore fluid factor k computed for the two deformation episodes indicates high fluid pressures during the Monte Perdido thrust activity. During the first stage of deformation, the reactivation of the shear surface was facilitated by a suprahydrostatic fluid pressure with a pore fluid factor kv equal to 0.89. For the second stage, the fluid pressure remained still high (with a k value ranging between 0.77 and 0.84) even with the presence of weak chlorite along the shear surfaces. Furthermore, evidence of hydrostatic fluid pressure during calcite cement precipitation supports that incremental shear surface reactivations are correlated with cyclic fluid pressure fluctuations consis- tent with a fault-valve model.
Resumo:
Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history. Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine, the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may evolve rapidly (<5000 generations).