971 resultados para Family Structure
Resumo:
The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3`-> 5`)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv Citri (PilZ(XAC1133), this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZ(XAC1133) shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which NZ proteins regulate specific processes is not clear. In this study, we show that PilZ(XAC1133) binds to PilB, an ATPase required for TV polymerization, and to the EAL domain of FiMX(XAC2398), which regulates TV biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXX(AC2398) in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZ(XAC1133). Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZ(XAC1133) interactions with FimX(XAC2398) and PilB(XAC3239) are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of ""degenerate"" GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Various significant anti-HCV and cytotoxic sesquiterpene lactones (SLs) have been characterized. In this work, the chemometric tool Principal Component Analysis (PCA) was applied to two sets of SLs and the variance of the biological activity was explored. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. The calculations were performed using VolSurf program. For anti-HCV activity, PC1 (First Principal Component) explained 30.3% and PC2 (Second Principal Component) explained 26.5% of matrix total variance, while for cytotoxic activity, PC1 explained 30.9% and PC2 explained 15.6% of the total variance. The formalism employed generated good exploratory and predictive results and we identified some structural features, for both sets, important to the suitable biological activity and pharmacokinetic profile.
Resumo:
The Hsp70 family is one of the most important and conserved molecular chaperone families. It is well documented that Hsp70 family members assist many cellular processes involving protein quality control, as follows: protein folding, transport through membranes, protein degradation, escape from aggregation, intracellular signaling, among several others. The Hsp70 proteins act as a cellular pivot capable of receiving and distributing substrates among the other molecular chaperone families. Despite the high identity of the Hsp70 proteins, there are several homologue Hsp70 members that do not have the same role in the cell, which allow them to develop and participate in such large number of activities. The Hsp70 proteins are composed of two main domains: one that binds ATP and hydrolyses it to ADP and another which directly interacts with substrates. These domains present bidirectional heterotrophic allosteric regulation allowing a fine regulated cycle of substrate binding and release. The general mechanism of the Hsp70s cycle is under the control of ATP hydrolysis that modulates the low (ATP-bound state) and high (ADP-bound state) affinity states of Hsp70 for substrates. An important feature of the Hsp70s cycle is that they have several co-chaperones that modulate their cycle and that can also interact and select substrates. Here, we review some known details of the bidirectional heterotrophic allosteric mechanism and other important features for Hsp70s regulating cycle and function.
Resumo:
We investigated the 2PA absorption spectrum of a family of perylene tetracarboxylic derivatives ( PTCDs): bis( benzimidazo) perylene ( AzoPTCD), bis( benzimidazo) thioperylene ( Monothio BZP), n-pentylimidobenzimidazoperylene ( PazoPTCD), and bis( n-butylimido) perylene ( BuPTCD). These compounds present extremely high two-photon absorption, which makes them attractive for applications in photonics devices. The two-photon absorption cross-section spectra of perylene derivatives obtained via Z-scan technique were fitted by means of a sum-over-states ( SOS) model, which described with accuracy the different regions of the 2PA cross-section spectra. Frontier molecular orbital calculations show that all molecules present similar features, indicating that nonlinear optical properties in PTCDs are mainly determined by the central portion of the molecule, with minimal effect from the lateral side groups. In general, our results pointed out that the differences in the 2PA cross-sections among the compounds are mainly due to the nonlinearity resonance enhancement.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Agarose gels stained with Ethidium bromide and Southern blot experiments of HindIII-digested genomic DNA of Achirus lineatus evidenced the presence of monomers and multimers of a DNA segment of about 200 bp, named here Al-HindIII sequence. No signals were observed in Southern blot experiments with genomic DNA of other flatfish species. The DNA sequencing of four recombinant clones showed that Al-HindIII sequences had 204 bp and were 63.72% AT-rich. FISH experiments using a Al-HindIII sequence as probe showed bright signals in the centromeric position of all chromosomes of A. lineatus.
Resumo:
A estrutura horizontal e vertical do componente arbóreo foi investigada em um trecho de Floresta Atlântica baixo-montana através de um levantamento fitossociológico em dois blocos amostrais de 0,99 ha cada no Parque Estadual Intervales. Todos os indivíduos com DAP > 5 cm foram registrados. Foram amostrados 3.078 indivíduos distribuídos em 172 espécies. O índice de diversidade de Shannon foi de H' = 3,85 nat.ind.-1. A família Myrtaceae se destacou tanto em número de espécies (38) quanto em número de indivíduos (745) no levantamento. Euterpe edulis Mart. teve o maior valor de importância (33,98%), abrangendo 21,8% do total de indivíduos registrados. O índice de similaridade quantitativo foi maior do que o qualitativo, mostrando pouca variação estrutural entre os blocos amostrais, mas a grande quantidade de espécies pouco abundantes, resultou em pronunciadas diferenças florísticas entre eles. Uma análise de correspondência retificada (DCA) gerou três estratos verticais arbitrários. O estrato A (> 26 m) teve a menor densidade e foi bem representado pelas espécies Sloanea guianensis (Aubl.) Benth. e Virola bicuhyba (Schott. ex A.DC.) Warb. O estrato B (8 m < h < 26 m) mostrou a maior riqueza e diversidade florística, e o estrato C (< 8 m) a maior densidade. Euterpe edulis, Guapira opposita (Vell.) Reitz, Garcinia gardneriana (Planch. & Triana) Zappi e Eugenia mosenii (Kausel) Sobral foram bem representadas nos estratos B e C da floresta. A existência de estratos verticais em florestas tropicais é discutida, recomendando-se o uso da DCA para estudos da estratificação vertical em outras florestas tropicais.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Branching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch. We report the 2.3-Angstrom crystal structure of glycogen branching enzyme from Escherichia coli. The enzyme consists of three major domains, an NH2-terminal seven-stranded beta-sandwich domain, a COOH-terminal domain, and a central alpha/beta-barrel domain containing the enzyme active site. While the central domain is similar to that of all the other amylase family enzymes, branching enzyme shares the structure of all three domains only with isoamylase. Oligosaccharide binding was modeled or branching enzyme using the enzyme-oligosaccharide complex structures of various alpha-amylases and cyclodextrin glucanotransferase and residues were implicated in oligosaccharide binding. While most of the oligosaccharides modeled well in the branching enzyme structure, an approximate 50degrees rotation between two of the glucose units was required to avoid steric clashes with Trp(298) of branching enzyme. A similar rotation was observed in the mammalian alpha-amylase structure caused by an equivalent tryptophan residue in this structure. It appears that there are two binding modes for oligosaccharides in these structures depending on the identity and location of this aromatic residue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ichthyofauna of 24 stretches of streams, all of 100 m length and of fifth or lower order and most of second and third order, were sampled along four left bank tributaries (Rio do Peixe, Rio Aguapei, Rio Sao Jose dos Dourados, lower Rio Tiete of the main channel of the Rio Parana in the state of São Paulo, southeastern Brazil. Sampling of the fish fauna at each of the six sites in the four basins incorporated a standardized fish collecting methodology and a standardized documentation of environmental data serving as the basis for a comparative analysis of the collecting locations. The 8,189 fish specimens collected represented six orders, 18 families, 42 genera, and 56 species, with a total biomass of 28.8 kg. Approximately 52% of the collected species were characiforms, 28% siluriforms, 9% gymnotiforms, 5% cyprinodontiforms, 4% perciforms, and 2% synbranchiforms. The most abundant of the species were the characiforms Astyanax altiparanae (15% of total) and Knodus moenkhausii (12% of total). The two species with the largest overall biomasses were A. altiparanae (34% of total biomass) and the siluriform Hypostomus sp. (8% of total biomass). Analysis of the trophic structure of the studied ichthyofauna indicated that the 10 numerically dominant species across the 24 sampled streams can be grouped into five guilds that are in decreasing order of numerical importance: omnivores, insectivores, insectivores/invertivores, periphytivores, and algivores. Species richness in the sampled stream stretches varied from six to 20 species with an average richness of 14. The species richness estimated by extrapolation for all 24 sampled stream stretches was 67 species. The Characidae are predominant among the collected specimens with approximately 50% of both individuals and biomass, a fact hypothesized to be a function of several attributes typical of the family. Six of the 56 collected species were new to science and six other species are of indefinite taxonomic status and require further analysis in order to determine their identity.
Resumo:
The Fermi accelerator model is studied in the framework of inelastic collisions. The dynamics of this problem is obtained by use of a two-dimensional nonlinear area-contracting map. We consider that the collisions of the particle with both periodically time varying and fixed walls are inelastic. We have shown that the dissipation destroys the mixed phase space structure of the nondissipative case and in special, we have obtained and characterized in this problem a family of two damping coefficients for which a boundary crisis occurs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 +/- 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-lengthamino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 angstrom resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (beta alpha)(8) barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.
Resumo:
The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein ( sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 angstrom resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 angstrom. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.