990 resultados para Falshoeft Channel, Kiel Bay
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.
Resumo:
Continuous high-resolution mass accumulation rates (MAR) and X-ray fluorescence (XRF) measurements from marine sediment records in the Bay of Biscay (NE Atlantic) have allowed the determination of the timing and the amplitude of the 'Fleuve Manche' (Channel River) discharges during glacial stages MIS 10, MIS 8, MIS 6 and MIS 4-2. These results have yielded detailed insight into the Middle and Late Pleistocene glaciations in Europe and the drainage network of the western and central European rivers over the last 350 kyr. This study provides clear evidence that the 'Fleuve Manche' connected the southern North Sea basin with the Bay of Biscay during each glacial period and reveals that 'Fleuve Manche' activity during the glaciations MIS 10 and MIS 8 was significantly less than during MIS 6 and MIS 2. We correlate the significant 'Fleuve Manche' activity, detected during MIS 6 and MIS 2, with the extensive Saalian (Drenthe Substage) and the Weichselian glaciations, respectively, confirming that the major Elsterian glaciation precedes the glacial MIS 10. In detail, massive 'Fleuve Manche' discharges occurred at ca 155 ka (mid-MIS 6) and during Termination I, while no significant discharges are found during Termination II. It is assumed that a substantial retreat of the European ice sheet at ca 155 kyr, followed by the formation of ice-free conditions between the British Isles and Scandinavia until Termination II, allowed meltwater to flow northwards through the North Sea basin during the second part of the MIS 6. We assume that this glacial pattern corresponds to the Warthe Substage glacial maximum, therefore indicating that the data presented here equates to the Drenthe and the Warthe glacial advances at ca 175-160 ka and ca 150-140 ka, respectively. Finally, the correlation of our records with ODP site 980 reveals that massive 'Fleuve Manche' discharges, related to partial or complete melting of the European ice masses, were synchronous with strong decreases in both the rate of deep-water formation and the strength of the Atlantic thermohaline circulation. 'Fleuve Manche' discharges over the last 350 kyr probably participated, with other meltwater sources, in the collapse of the thermohaline circulation by freshening the northern Atlantic surface water.
Resumo:
This data report includes the analytical results of about 220 water wamples collected at 33 stations in the Fjords of Kiel ,...
Resumo:
Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, primarily derived from southernmost South America and from minor sources in Southwest Africa. Near submarine volcanoes of the Antarctic Ocean (South Sandwich, Bouvet Island) smectite contents exhibit distinct maxima, which is ascribed to the weathering of altered basalts and volcanic glasses. The illite distribution can be subdivided into five major zones including two maxima revealing both South African and Antarctic sources. A particularly high amount of Mg- and Fe-rich illites are observed close to East Antarctica. They are derived from biotite-bearing crystalline rocks and transported to the west by the East Antarctic Coastal Current. Chiorite and well-crystallized dioctaedral illite are typical minerals enriched within the Subantarctic and Polarfrontal-Zone but of minor importance off East Antarctica. Kaolinite dominates the clay mineral assemblage at low latitudes, where the continental source rocks (West Africa, Brazil) are mainly affected by intensive chemical weathering. Surprisingly, a slight increase of kaolinite is observed in the Enderby Basin and near the Filchner-Ronne Ice shelf. The investigated area can be subdivided into ten, large-scale clay facies zones with characteristic possible source regions and transport paths. Clay mineral assemblages of the largest part of the South Atlantic, especially of the western basins are dominated by chlorite and illite derived from the Antarctic Peninsula and southernmost South America and supported by advection within the Circumantarctic Deep Water flow. In contrast, the East Antarctic provinces are relatively small. Assemblages of the eastern basins north of 30°S are strongly influenced by African sources, controlled by weathering regimes on land and by a complex interaction of wind, river and deep ocean transport. The strong gradient in clay mineral composition at the Brazilian slope indicate a relatively low contribution of tropically derived assemblages to the western basins.
Resumo:
A ship-based acoustic mapping campaign was conducted at the exit of Ilulissat Ice Fjord and in the sedimentary basin of Disko Bay to the west of the fjord mouth. Submarine landscape and sediment distribution patterns are interpreted in terms of glaciomarine facies types that are related to variations in the past position of the glacier front. In particular, asymmetric ridges that form a curved entity and a large sill at the fjord mouth may represent moraines that depict at least two relatively stable positions of the ice front in the Disko Bay and at the fjord mouth. In this respect, Ilulissat Glacier shows prominent differences to the East Greenland Kangerlussuaq Glacier which is comparable in present size and present role for the ice discharge from the inland ice sheet. Two linear clusters of pockmarks in the center of the sedimentary basin seem to be linked to ongoing methane release due to dissociation of gas hydrates, a process fueled by climate warming in the Arctic realm.
Resumo:
The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens). The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.
Resumo:
This book presents research in the field of Geophysics, particularly referring to principles, applications and emerging technologies. Table of Contents: Preface pp. i-xxi Environmental Geophysics: Techniques, advantages and limitations (Pantelis Soupios and Eleni Kokinou, Department of Environmental and Natural Resources Engineering, Technological Educational Institute of Crete, Dynamics of the Ocean Floor, Helmholtz Centre for Ocean Research Kiel, Geomar)pp i-xxi Application of Innovative Geophysical Techniques in Coastal Areas (V. Di Fiore, M. Punzo, D. Tarallo, and G. Cavuoto, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Marine Geophysics of the Naples Bay (Southern Tyrrhenian sea, Italy): Principles, Applications and Emerging Technologies (Gemma Aiello and Ennio Marsella, Institute for Marine Coastal Environment, National Research Council, Naples)pp. i-xxi Oceanic Oscillation Phenomena: Relation to Synchronization and Stochastic Resonance (Shinya Shimokawa and Tomonori Matsuura, National Research Institute for Earth Science and Disaster Prevention, Univ. of Toyama)pp. i-xxi Assessment of ocean variability in the Sicily Channel from a numerical three-dimensional model using EOFs decomposition (R. Sorgente, A. Olita, A.F. Drago, A. Ribotti, L. Fazioli, and C. Tedesco, Institute for Marine Coastal Environment, National Research Council, Oristano)pp. i-xxi Monitoring Test of Crack Opening in Volcanic Tuff (Coroglio Cliff. Italy) Using Distributed Optical Fiber Sensor (A. Minardo, A. Coscetta, M. Caccavale, G. Esposito, F. Matano, M. Sacchi, R. Somma, G. Zeni, and L. Zeni, Department of Industrial and Information Eng., Second University of Naples Aversa, Institute for Marine Coastal Environment, National Research Council Naples, National Institute for Geophysics and Volcanology, Osservatorio Vesuviano Naples, Institute for Electromagnetic Sensing of the Environment, National Research Council Naples)pp. i-xxi
Resumo:
This paper presents the general framework of an ecological model of the English Channel. The model is a result of combining a physical sub-model with a biological one. in the physical submodel, the Channel is divided into 71 boxes and water fluxes between them are calculated automatically. A 2-layer, vertical thermohaline model was then linked with the horizontal circulation scheme. This physical sub-model exhibits thermal stratification in the western Channel during spring and summer and haline stratification in the Bay of Seine due to high flow rates from the river. The biological sub-model takes 2 elements, nitrogen and silicon, into account and divides phytoplankton into diatoms and dinoflagellates. Results from this ecological model emphasize the influence of stratification on chlorophyll a concentrations as well as on primary production. Stratified waters appear to be much less productive than well-mixed ones. Nevertheless, when simulated production values are compared with literature data, calculated production is shown to be underestimated. This could be attributed to a lack of refinement of the 2-layer box-model or processes omitted from the biological model, such as production by nanoplankton.
Resumo:
A general framework for an ecological model of the English Channel was described in the first of this pair of papers. In this study, it was used to investigate the sensitivity of the model to various factors: model structure, parameter values, boundary conditions and forcing variables. These sensitivity analyses show how important quota formulation for phytoplankton growth is, particularly for growth of dinoflagellates. They also stress the major influence of variables and parameters related to nitrogen. The role played by rivers and particularly the river Seine was investigated. Their influence on global English Channel phytoplanktonic production seems to be relatively low, even though nutrient inputs determine the intensity of blooms in the Bay of Seine. The geographical position of the river Seine's estuary makes it important in fluxes through the Straits of Dover. Finally, the multi-annual study highlights the general stability of the English Channel ecosystem. These global considerations are discussed and further improvements to the model are proposed.
Resumo:
The Bay of Algeciras (BA) is a marine environment subject to high levels of anthropogenic pressure. Here we analyze observations collected at the Bay and the results of an ocean circulation model to investigate its circulation and variability. Special attention is paid to the identification of the mechanisms enhancing the exchange of water with the adjacent Strait of Gibraltar and therefore contributing to maintain satisfactory levels of water quality.
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.