990 resultados para FSI numerical technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiotherapists frequently use manipulative therapy techniques to treat dysfunction and pain resulting from ankle sprain. This study investigated whether a Mulligan's mobilization with movement (MWM) technique improves talocrural dorsiflexion, a major impairment following ankle sprain, and relieves pain in subacute populations. Fourteen subjects with subacute grade II lateral ankle sprains served as their own control in a repeated measures, double-blind randomized controlled trial that measured the initial effects of the MWM treatment on weight bearing dorsiflexion and pressure and thermal pain threshold. The subacute ankle sprain group studied displayed deficits in dorsiflexion and local pressure pain threshold in the symptomatic ankle. Significant improvements in dorsiflexion occurred initially post-MWM (F-(2,F-26) 7.82, P = 0.002), but no significant changes in pressure or thermal pain threshold were observed after the treatment condition. Results indicate that the MWM treatment for ankle dorsiflexion has a mechanical rather than hypoalgesic effect in subacute ankle sprains. The mechanism by which this occurs requires investigation if we are to better understand the role of manipulative therapy in ankle sprain management. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a methodology to obtain thin films of cucurbit[6]uril, starting from ammoniacal solutions. This technique is very useful for the obtention of modified electrodes or other substrates for sensor purposes. Cucurbit[6]uril is insoluble in most media, and film formation was impossible until now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To describe a new suture technique for laryngeal microsurgery and to test its applicability in human cadaver larynges. The new technique was experimentally tested in freshly excised human larynges fixed to a larynx holder appropriate for the simulation of laryngeal microsurgery. A mucosal flap was created in the vocal fold for the fabrication of a pocket for subepithelial fat implantation, and the wound edges were then brought together and sutured using the proposed technique. The time necessary for suture was measured with a stopwatch for five successive sutures performed by one of the surgeons. The presence or absence of mucosal rupture was determined for five sutures performed by two surgeons, for a total of 10 sutures. The sutures were performed without the help of an assistant, with no laceration of the mucosa being observed in any of the attempts, and within a relatively short period of time even without previous training. The sutures performed permitted the implanted fat to remain stable under the mucosal flap. Conclusions: the new suture technique is an easy procedure, which can be performed by a single surgeon under microscopic vision, with a low risk of tissue rupture. The technique does not markedly prolong the duration of surgery and a single suture thread can be used for the fabrication of more than one stitch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Hypoglossal-facial neurorrhaphy has been widely used for reanimation of paralyzed facial muscles after irreversible proximal injury of the facial nerve. However, complete section of the hypoglossal nerve occasionally results in hemiglossal dysfunction and interferes with swallowing and speech. To reduce this morbidity, a modified technique with partial section of the hypoglossal nerve after mastoid dissection of the facial nerve (HFM) has been used. We report our experience with the HFM technique, retrospectively comparing the outcome with results of the classic hypoglossal-facial neurorrhaphy. METHODS: A retrospective review was performed in 36 patients who underwent hypoglossal-facial neurorrhaphy with the classic (n = 12) or variant technique (n = 24) between 2000 and 2006. Facial Outcome was evaluated with the House-Brackmann grading system, and tongue function was evaluated with a new scale proposed to quantify Postoperative tongue alteration. The results were compared, and age and time between nerve injury and surgery were correlated with the outcome. RESULTS: There was no significant difference between the two techniques concerning facial reanimation. A worse outcome of tongue function, however, was associated with the classic technique (Mann-Whitney U test; P < 0.05). When HFM was used, significant correlations defined by the Spearman test were identified between preoperative delay (p = 0.59; P = 0.002) or age (p = 0.42; P = 0.031) and results of facial reanimation evaluated with the House-Brackmann grading system. CONCLUSION: HFM is as effective as classic hypoglossal-facial neurorrhaphy for facial reanimation, and it has a much lower morbidity related to tongue function. Better results are obtained in younger patients and with a shorter interval between facial nerve injury and surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive probabilistic model for simulating dendrite morphology and investigating dendritic growth kinetics during solidification has been developed, based on a modified Cellular Automaton (mCA) for microscopic modeling of nucleation, growth of crystals and solute diffusion. The mCA model numerically calculated solute redistribution both in the solid and liquid phases, the curvature of dendrite tips and the growth anisotropy. This modeling takes account of thermal, curvature and solute diffusion effects. Therefore, it can simulate microstructure formation both on the scale of the dendrite tip length. This model was then applied for simulating dendritic solidification of an Al-7%Si alloy. Both directional and equiaxed dendritic growth has been performed to investigate the growth anisotropy and cooling rate on dendrite morphology. Furthermore, the competitive growth and selection of dendritic crystals have also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to determine the impact of endovascular surgery versus open vascular technique training in a Brazilian teaching service. DESIGN: Cross-sectional study. SETTING: Hospital das Clinicas-Faculty of Medicine University of Sao Paulo, a tertiary institutional hospital Brazil. PARTICIPANTS: We reviewed 1,040 arterial operations performed during 2 distinct time periods: January 1995 to December 1996, and January 2006 to December 2007. Based on the disease treated, the procedures were classified into the following 5 groups: abdominal aortic aneurysms (AAA), aorto-iliac obstructive disease (Al), obstructive disease of the femoropoplitealtibial segment (FP), carotid disease (C), and others (0). The operations were also divided into an endovascular surgery (ES) group and an open surgery (OS) group. We compared the number of open and endovascular procedures for each arterial disease group during both periods. RESULTS: During the 2006-2007 period, 654 patients were treated surgically, whereas over the 1995-1996 period, 386 arterial operations were performed. A. significant increase in endovascular procedures (p < 0.001) was found from the 1995-1996 period to the 2006-201)7 period (35 vs 351, respectively) in all groups, whereas open surgery showed a slight increase in the number of procedures in the AAA and 0 groups only. In the 1995-1996 period, OS was the primary surgical method for all groups, but in the 2006-2007 time frame, OS was performed more frequently than ES only in the AAA and 0 groups. Considering all vascular disease groups, OS was the technique used in 90.9% (351 of 386) of the operations during 1995-1996, whereas in 2006-2007, OS was performed in only 46.3% (303 of 654) of the procedures. CONCLUSIONS: The increase in the number of ES observed over the past decade has had little impact on OS procedures performed at our medical center, not bringing harm to open surgical training. (J Surg 68:19-23. (C) 2011 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.)