904 resultados para FAILURE OF NEUTROPHIL MIGRATION
Resumo:
NOD-like receptors (NLR) are a family of cytosolic pattern recognition receptors that include many key drivers of innate immune responses. NLRP12 is an emerging member of the NLR family that is closely related to the well-known inflammasome scaffold, NLRP3. Since its discovery, various functions have been proposed for NLRP12, including the positive regulation of dendritic cell (DC) and neutrophil migration and the inhibition of NF-κB and ERK signalling in DC and macrophages. We show here that NLRP12 is poorly expressed in murine macrophages and DC, but is strongly expressed in neutrophils. Using myeloid cells from WT and Nlrp12(-/)(-) mice, we show that, contrary to previous reports, NLRP12 does not suppress LPS- or infection-induced NF-κB or ERK activation in myeloid cells, and is not required for DC migration in vitro. Surprisingly, we found that Nlrp12 deficiency caused increased rather than decreased neutrophil migration towards the chemokine CXCL1 and the neutrophil parasite Leishmania major, revealing NLRP12 as a negative regulator of directed neutrophil migration under these conditions.
Resumo:
BACKGROUND AND PURPOSE The serine and cysteine peptidase inhibitor, BbCI, isolated from Bauhinia bauhinioides seeds, is similar to the classical plant Kunitz inhibitor, STI, but lacks disulphide bridges and methionine residues. BbCI blocks activity of the serine peptidases, elastase (K(iapp) 5.3 nM) and cathepsin G (K(iapp) 160.0 nM), and the cysteine peptidase cathepsin L (K(iapp) 0.2 nM). These three peptidases play important roles in the inflammatory process. EXPERIMENTAL APPROACH We measured the effects of BbCI on paw oedema and on leucocyte accumulation in pleurisy, both induced by carrageenan. Leucocyte-endothelial cell interactions in scrotal microvasculature in Wistar rats were investigated using intravital microscopy. Cytokine levels in pleural exudate and serum were measured by ELISA. KEY RESULTS Pretreatment of the animals with BbCI (2.5 mg.kg(-1)), 30 min before carrageenan-induced inflammation, effectively reduced paw oedema and bradykinin release, neutrophil migration into the pleural cavity. The number of rolling, adhered and migrated leucocytes at the spermatic fascia microcirculation following carrageenan injection into the scrotum were reduced by BbCI pretreatment. Furthermore, levels of the rat chemokine cytokine-induced neutrophil chemo-attractant-1 were significantly reduced in both pleural exudates and serum from animals pretreated with BbCI. Levels of interleukin-1 beta or tumour necrosis factor-alpha, however, did not change. CONCLUSIONS AND IMPLICATIONS Taken together, our data suggest that the anti-inflammatory properties of BbCI may be useful in investigations of other pathological processes in which human neutrophil elastase, cathepsin G and cathepsin L play important roles.
Resumo:
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.
Resumo:
Aim of the study: Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. Materials and methods: LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 mu M CGA in presence of lipopolysaccharide from Escherichia coil (LPS, 5 mu g/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha [TNF-alpha; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, beta(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. Results: CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced beta(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression: inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Conclusions: Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Recent in vitro data have suggested that the flavonoid quercetin (1) does not affect the functioning of neutrophils. Therefore, we evaluated in vivo and in vitro whether or not 1 affects neutrophil function, focusing on recruitment. The in vivo treatment with 1 inhibited in a dose-dependent manner the recruitment of neutrophils to the peritoneal cavity of mice induced by known chemotatic factors such as CXCL1, CXCL5, LTB(4), and fMLP. Further-more, 1 also inhibited in a concentration-dependent manner the chemoattraction of human neutrophils induced by CXCL8, LTB(4), and fMLP in a Boyden chamber. In vitro treatment with 1 did not affect human neutrophil surface expression of CXCR1, CXCR2, BLT1, or FLPR1, but rather reduced actin polymerization. These results suggest that 1 inhibits actin polymerization, hence, explaining the inhibition of neutrophil recruitment in vivo and in vitro and highlighting its possible usefulness to diminish excessive neutrophil migration during inflammation.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
Sepsis is a systemic inflammatory condition following bacterial infection with a high mortality rate and limited therapeutic options(1,2). Here we show that interleukin-33 (IL-33) reduces mortality in mice with experimental sepsis from cecal ligation and puncture (CLP). IL-33-treated mice developed increased neutrophil influx into the peritoneal cavity and more efficient bacterial clearance than untreated mice. IL-33 reduced the systemic but not the local proinflammatory response, and it did not induce a T helper type 1 (T(H)1) to T(H)2 shift. The chemokine receptor CXCR2 is crucial for recruitment of neutrophils from the circulation to the site of infection(3). Activation of Toll-like receptors (TLRs) in neutrophils downregulates CXCR2 expression and impairs neutrophil migration(4). We show here that IL-33 prevents the downregulation of CXCR2 and inhibition of chemotaxis induced by the activation of TLR4 in mouse and human neutrophils. Furthermore, we show that IL-33 reverses the TLR4-induced reduction of CXCR2 expression in neutrophils via the inhibition of expression of G protein coupled receptor kinase-2 (GRK2), a serine-threonine protein kinase that induces internalization of chemokine receptors(5,6). Finally, we find that individuals who did not recover from sepsis had significantly more soluble ST2 (sST2, the decoy receptor of IL-33) than those who did recover. Together, our results indicate a previously undescribed mechanism of action of IL-33 and suggest a therapeutic potential of IL-33 in sepsis.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
The D-mannose binding lectin ArtinM from Artocarpus integrifolia, previously known as KM+ and artocarpin. is considered a stimulant of Th1-type immunity, which is able to confer resistance to some intracellular pathogens. In addition, ArtinM induces neutrophil migration by haptotaxis through simultaneous interactions of its carbohydrate recognition domains (CRDs) with glycans expressed on the extracellular matrix and the neutrophil surface. In the present study, we have expanded the characterization of ArtinM as a neutrophil activator. Exposure of neutrophils to ArtinM for 15 min resulted in tyrosine phosphorylation of intracellular proteins, a process that was selectively inhibited by D-mannose or mannotriose. Shortly after stimulation, neutrophils secreted high levels of LTB(4) and underwent shedding of L-selectin from their surface. Exposure to ArtinM enhanced neutrophil functions, such as respiratory burst and zymozan and Listeria monocytogenes phagocytosis. In addition, ArtinM-stimulated neutrophils displayed increased CXCL-8 secretion and TLR2 gene transcription. These results demonstrate that ArtinM is able to induce potent neutrophil activation, a feature that should be strongly considered in the assessment of the lectin capacity to confer resistance against infections. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Thyroid ectopy results from the failure of the thyroid precursor cells to migrate from the primordial pharynx to the anterior part of the neck. Most ectopic thyroids are revealed by congenital hypothyroidism and present as a single round mass at the base of the tongue, with no other thyroid tissue. However, some cases have dual ectopy, with part of the tissue having partially migrated. We hypothesized that this occurs more frequently than previously reported.¦METHODS: To determine the prevalence of dual ectopy, we reviewed the pertechnetate scintigraphies of 81 patients with congenital hypothyroidism from thyroid ectopy diagnosed between 2002 and 2011 at our institution.¦RESULTS: We report a series of seven cases (9%) of dual ectopy, representing an incidence ranging from 1:50,000 to 1:70,000.¦CONCLUSIONS: Almost one in 10 cases with congenital hypothyroidism due to thyroid ectopy has dual ectopy. This suggests that two populations of cells diverged at an early stage of development, which may arise from insufficient signaling gradients in surrounding tissues during early organogenesis or may indirectly support the polyclonal nature of the thyroid.
Resumo:
BACKGROUND: Closures of atrial septal defects or a patent foramen ovale (PFO) are increasingly performed percutaneously. The experience of late migration of a new bio-absorbable device is presented here, followed by conceptual discussion. METHODS: Six months post PFO closure with a BioSTAR® device a patient presented with chest pain. Echocardiography showed a hyperechogenic structure perforating the aortic wall. RESULTS: Surgical exploration showed a perforation of the ascending aorta by one metallic, non absorbable arm. This is the second case of late (>6 months) dislocation of the residual framework of the occluder. CONCLUSIONS: The overall incidence of perforation of cardiac structures due to secondary dislocation is low. However this complication exists and should kept in mind in symptomatic patients with new onset of chest pain, after percutaneous procedures. The concept of biodegradation, with residual, non absorbable metal braiding, should be reviewed, analyzing in particular long term results and incidence of secondary dislocation.
Resumo:
Immigration, intégration, précarité, échec scolaire, ignorance du français, délinquance sont des thèmes qui animent régulièrement les débats publics, médiatiques et politiques. Bien que les migrations ont toujours fait partie de l'histoire humaine, elles sont souvent décrites comme un trouble aux identités nationales, elles-mêmes mises à mal par la mondialisation. Cependant, les mécanismes sous-tendant les difficultés rencontrées par certains enfants de migrants demeurent bien moins débattus et considérés que leurs conséquences bruyantes et visibles. Après une réflexion sur l'impact de la migration elle-même sur le sujet et un bref aperçu de l'ethnopsychiatrie, nous allons décrire les difficultés que peut rencontrer l'enfant de migrants, leurs origines et leurs conséquences. Nous nous intéresserons ensuite à la manière dont notre société, nos institutions en tiennent compte ou pas. Nous terminerons notre propos par la mise en relief des besoins thérapeutiques et éducatifs spéciaux de ces enfants et la manière dont ceux-ci sont comblés (ou non). Immigration, social integration, precariousness, language barrier, delinquency are constantly stimulating public, political and media debate. Migrations always were part of the human history but they are often described like a disorder of the national identities, themselves put at evil by globalization. However, the origin of the difficulties that certain children of migrants encounter is often overlooked. Only their disturbing implications are frequently studied. After a brief comment on the impact of the migration and the ethnopsychiatry, we will outline the difficulties sometimes faced by the children of migrants, their origins and consequences. Then we will describe how the society and the institutions take them in account (or not). We finally will delineate the specific needs of those children and how they are meeting (or not).
Resumo:
De par sa présence dans tous les vaisseaux sanguins, l'endothélium joue un rôle clef dans le processus d’hémostase, tant par sa libération de facteurs anticoagulants que par ses changements protéiques qui permettent à l’organisme de déclencher la réparation tissulaire. La fonction anticoagulante de l’endothélium peut être mise en défaut en cas d’atteinte de son intégrité, entrainant la formation de thrombus, le rejet précoce de greffes ou encore l’induction de l’athérosclérose. L’intégrité de l’endothélium est donc capitale pour la prévention de nombreuses maladies cardiovasculaires. Chez l’adulte, les cellules endothéliales (CE), normalement quiescentes, sont rapidement activées en cas d’hypoxie ou d’inflammation, leur permettant ainsi d’amorcer le processus angiogénique comme suit: Tout d’abord, l’induction de l’hyperperméabilité vasculaire permet l’extravasation des protéines plasmatiques. Ensuite, la dégradation de la lame basale par des métalloprotéases permet aux CE de se détacher, de proliférer, de migrer et de s’organiser pour former l’ébauche du futur vaisseau. La dernière étape consiste en la maturation du vaisseau, c’est-à-dire son recouvrement par des cellules murales, telles que les cellules musculaires lisses et les péricytes. Ces processus sont régulés par de nombreux facteurs angiogéniques tels que les membres de la famille Notch, du vascular endothelial growth factor (VEGF), du fibroblast growth factor (FGF), des angiopoïétines, et des matrix metalloproteases (MMP). L’angiogenèse pathologique, soit une insuffisance ou un excès de vascularisation, est impliquée dans les blessures chroniques, les accidents cardiovasculaires, les pathologies coronariennes artérielles, les pathologies tumorales, l’arthrite rhumatoïde, la rétinopathie diabétique, l’athérosclérose, le psoriasis et l’asthme. Ces pathologies sont souvent issues d’une dérégulation de l’activité endothéliale, fréquemment observée conjointement à l’expression continue de molécules d’adhésion leucocytaires, à l’augmentation de la perméabilité vasculaire, et aux anomalies de la vasoréactivité. L’activation non-contrôlée de l’endothélium entraîne ainsi une inflammation chronique et la formation de structures vasculaires anarchiques. Les premiers leucocytes à répondre à l’appel inflammatoire sont les neutrophiles. Equippées d’une panoplie de produits antibactériens puissants mais aussi nocifs pour les tissus qui les entourent, ces cellules polylobées participent à chaque étape du processus inflammatoire, depuis l’induction de l’hyperperméabilité vasculaire jusqu’à la résolution. En effet, grâce à leurs récepteurs, les neutrophiles détectent et interprètent les signaux biochimiques présents dans la circulation et à la surface de l’endothélium, et libèrent aussi leurs propres médiateurs tels le VEGF, les MMP, et l’interleukine-8 (IL-8), dont les effets sont à la fois paracrines et autocrines. Existent-ils d’autres modulateurs typiques de la fonction endothéliale capables d’influencer le comportement des neutrophiles? En effet, notre laboratoire a démontré que chez l’humain, une stimulation directe aux angiopoïétines incitait les neutrophiles à adhérer aux CE, à migrer, à synthétiser et à relâcher l’IL-8, voire même à vivre plus longtemps. La présence du récepteur des angiopoïétines, Tie2, à la surface des neutrophiles laisse présager que la famille possèderait d’autres fonctions leucocytaires encore non-identifiées. Par ailleurs, dans un modèle classique de l’angiogenèse in vivo (matrigel), nous avons observé que sous l’effet du FGF1 et 2, les ébauches des nouveaux vaisseaux étaient parfois accompagnées d’une infiltration de cellules granulocytaires. Ainsi, en partant de ces observations, l’objectif de nos études (présentées ci-après) était d’approfondir nos connaissances sur la relation entre neutrophiles et facteurs angiogéniques, notamment les FGF et les angiopoïétines. Par tests in vitro, nous avons confirmé que les neutrophiles humains exprimaient plusieurs récepteurs du FGF (FGFR1-4) d’une façon hétérogène, et qu’ils migraient vers un gradient des ligands FGF1 et 2. Par ailleurs, nous nous sommes intéressés aux voies de signalisation inflammatoires activées par les ligands FGF1, FGF2, Ang1 et Ang2. Grâce à une stratégie génique ciblant 84 gènes inflammatoires, nous avons identifié plusieurs cibles d’intérêt touchées par Ang1, dont certains membres de la famille de l’IL-1, alors qu’aucun des gènes testés n’avait changé de façon significative sous l’effet des FGF ou d’Ang2. Suite à des cinétiques approfondies, nous avons démontré qu’Ang1 stimulait la transcription de l’ARN messager de l’IL-1β, et augmentait simultanément la quantité de protéine immature (pro-IL-1β; inactive) et clivée (IL-1β « mature »; active). En parallèle, Ang1 augmentait la sécrétion de l’antagoniste naturel de l’IL-1β, l’IL-1RA, sans pour autant stimuler la relâche de l’IL-1β. A l’instar des endotoxines bactériennes dont les effets liés à l’IL-1 dépendaient de la kinase p38, ceux d’Ang1 découlaient presque entièrement des voies de signalisation du p42/44.
Resumo:
We studied changes in secondary metabolites in human neutrophils undergoing constitutive or tumour necrosis factor (TNFalpha) stimulated apoptosis by a combination of high-performance liquid chromatography (HPLC) and NMR spectroscopy. Our results show that in contrast to freshly isolated neutrophils, neutrophil cells aged for 20 h in vitro had marked differences in the levels of a number of endogenous metabolites including lactate, amino acids and phosphocholine (PCho). There was no change in the concentration of taurine or glutamate and the ATP/ADP ratio was not affected. Levels of glutamine and lactate actually decreased. Identical changes were also observed in neutrophils stimulated to undergo apoptosis over a shorter time period (6 h) in the presence of TNFalpha and the phosphatidylinositol-3-kinase inhibitor wortmannin (WM). The changes in the concentration of PCho suggest possible activation of phospholipase associated with apoptosis or a selective failure of phosphatidycholine synthesis. The increased levels of apoptosis obtained with WM+TNFalpha, compared to TNFalpha by itself, suggest a synergistic effect by these compounds. The acceleration in rate of apoptosis probably arises from suppression by WM of pathway(s) that normally delay the onset of apoptosis. Changes in PCho and other endogenous metabolites, if proven to be characteristic of apoptosis in other cell systems, may permit non-invasive quantification of apoptosis. '
Resumo:
SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.