860 resultados para Evolutionary particle swarm optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flocking is the capacity of coherent movement between multiple animals, including birds. Prominent research into flocking is presented. Particle Swarm Optimisation (PSO) has been the prominent result from research into flocking. It is considered that opportunities for further research in flocking exist. With the potential for automated traffic systems, it is concluded that flocking should be reinvestigated for this purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe, and make publicly available, two problem instance generators for a multiobjective version of the well-known quadratic assignment problem (QAP). The generators allow a number of instance parameters to be set, including those controlling epistasis and inter-objective correlations. Based on these generators, several initial test suites are provided and described. For each test instance we measure some global properties and, for the smallest ones, make some initial observations of the Pareto optimal sets/fronts. Our purpose in providing these tools is to facilitate the ongoing study of problem structure in multiobjective (combinatorial) optimization, and its effects on search landscape and algorithm performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution proposes a novel probability density function (PDF) estimation based over-sampling (PDFOS) approach for two-class imbalanced classification problems. The classical Parzen-window kernel function is adopted to estimate the PDF of the positive class. Then according to the estimated PDF, synthetic instances are generated as the additional training data. The essential concept is to re-balance the class distribution of the original imbalanced data set under the principle that synthetic data sample follows the same statistical properties. Based on the over-sampled training data, the radial basis function (RBF) classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier’s structure and the parameters of RBF kernels are determined using a particle swarm optimisation algorithm based on the criterion of minimising the leave-one-out misclassification rate. The effectiveness of the proposed PDFOS approach is demonstrated by the empirical study on several imbalanced data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swarm colonies reproduce social habits. Working together in a group to reach a predefined goal is a social behaviour occurring in nature. Linear optimization problems have been approached by different techniques based on natural models. In particular, Particles Swarm optimization is a meta-heuristic search technique that has proven to be effective when dealing with complex optimization problems. This paper presents and develops a new method based on different penalties strategies to solve complex problems. It focuses on the training process of the neural networks, the constraints and the election of the parameters to ensure successful results and to avoid the most common obstacles when searching optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS Subj. Classification: 90C27, 05C85, 90C59

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of game strategies have been developed in past decades and used in the fields of economics, engineering, computer science, and biology due to their efficiency in solving design optimization problems. In addition, research in multiobjective and multidisciplinary design optimization has focused on developing a robust and efficient optimization method so it can produce a set of high quality solutions with less computational time. In this paper, two optimization techniques are considered; the first optimization method uses multifidelity hierarchical Pareto-optimality. The second optimization method uses the combination of game strategies Nash-equilibrium and Pareto-optimality. This paper shows how game strategies can be coupled to multiobjective evolutionary algorithms and robust design techniques to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid and non-Hybrid-Game strategies are demonstrated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A baculovirus-insect cell expression system potentially provides the means to produce prophylactic HIV-1 virus-like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV-1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four-factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV-1 protein vaccine optimization, as well as for general optimization of a baculovirus-based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems.