402 resultados para Estrelas de neutrons
Resumo:
Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variab ility behavior is mandatory for obtaining an unbi ased statistical view on th eir controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-si nusoidal signatures. Th e variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspect s indicate a compatibility with stellar rotation, although more inform ation is needed to confirm their root- causes. Considering this possi bility, we identified a subset of th ree Sun-like candidates by their photometric peri od. Finally, the variability period versus color diagr am behavior was found to be highly depe ndent on the reddening correction.
Resumo:
Context. HD140283 is a nearby (V = 7:7) subgiant metal-poor star, extensively analysed in the literature. Although many spectra have been obtained for this star, none showed a signal-to-noise (S/N) ratio high enough to enable a very accurate derivation of abundances from weak lines. Aims. The detection of europium proves that the neutron-capture elements in this star originate in the r-process, and not in the s-process, as recently claimed in the literature. Methods. Based on the OSMARCS 1D LTE atmospheric model and with a consistent approach based on the spectrum synthesis code Turbospectrum, we measured the europium lines at 4129 Å and 4205 Å, taking into account the hyperfine structure of the transitions. The spectrum, obtained with a long exposure time of seven hours at the Canada-France-Hawaii Telescope (CFHT), has a resolving power of 81 000 and a S/N ratio of 800 at 4100 Å. Results. We were able to determine the abundance A(Eu) =
Resumo:
Context. Be stars are rapidly rotating stars with a circumstellar decretion disk. They usually undergo pressure and/or gravity pulsation modes excited by the κ-mechanism, i.e. an effect of the opacity of iron-peak elements in the envelope of the star. In the Milky Way, p-modes are observed in stars that are hotter than or equal to the B3 spectral type, while g-modes are observed at the B2 spectral type and cooler. Aims. We observed a B0IVe star, HD51452, with the high-precision, high-cadence photometric CoRoT satellite and high-resolution, ground-based HARPS and SOPHIE spectrographs to study its pulsations in great detail. We also used the lower resolution spectra available in the BeSS database. Methods. We analyzed the CoRoT and spectroscopic data with several methods: Clean-NG, FreqFind, and a sliding window method. We also analyzed spectral quantities, such as the violet over red (V/R) emission variations, to obtain information about the variation in the circumstellar environment. We calculated a stellar structure model with the ESTER code to test the various interpretation of the results. Results. We detect 189 frequencies of variations in the CoRoT light curve in the range between 0 and 4.5 c d−1. The main frequencies are also recovered in the spectroscopic data. In particular we find that HD51452 undergoes gravito-inertial modes that are not in the domain of those excited by the κ-mechanism. We propose that these are stochastic modes excited in the convective zones and that at least some of them are a multiplet of r-modes (i.e. subinertial modes mainly driven by the Coriolis acceleration). Stochastically excited gravito-inertial modes had never been observed in any star, and theory predicted that their very low amplitudes would be undetectable even with CoRoT. We suggest that the amplitudes are enhanced in HD51452 because of the very rapid stellar rotation. In addition, we find that the amplitude variations of these modes are related to the occurrence of minor outbursts. Conclusions. Thanks to CoRoT data, we have detected a new kind of pulsations in HD51452, which are stochastically excited gravito-inertial modes, probably due to its very rapid rotation. These modes are probably also present in other rapidly rotating hot Be stars.
Resumo:
We use the star count model of Ortiz & L´epine to perform an unprecedented exploration of the most important Galactic parameters comparing the predicted counts with the Two Micron All Sky Survey observed star counts in the J, H, and KS bands for a grid of positions covering the whole sky. The comparison is made using a grid of lines of sight given by the HEALPix pixelization scheme. The resulting best-fit values for the parameters are: 2120 ± 200 pc for the radial scale length and 205 ± 40 pc for the scale height of the thin disk, with a central hole of 2070+2000 −800 pc for the same disk, 3050 ± 500 pc for the radial scale length and 640 ± 70 pc for the scale height of the thick disk, 400 ± 100 pc for the central dimension of the spheroid, 0.0082 ± 0.0030 for the spheroid to disk density ratio, and 0.57 ± 0.05 for the oblate spheroid parameter.
Resumo:
We analyse the secular effects of a long-lived Galactic spiral structure on the stellar orbits with mean radii close to the corotation resonance. By test-particle simulations and different spiral potential models with parameters constrained on observations, we verified the formation of a minimum with amplitude ∼30–40 per cent of the background disc stellar density at corotation. Such a minimum is formed by the secular angular momentum transfer between stars and the spiral density wave on both sides of corotation. We demonstrate that the secular loss (gain) of angular momentum and decrease (increase) of mean orbital radius of stars just inside (outside) corotation can counterbalance the opposite trend of exchange of angular momentum shown by stars orbiting the librational points L4/5 at the corotation circle. Such secular processes actually allow steady spiral waves to promote radial migration across corotation. We propose some pieces of observational evidence for the minimum stellar density in the Galactic disc, such as its direct relation to the minimum in the observed rotation curve of the Galaxy at the radius r ∼ 9 kpc (for R0 = 7.5 kpc), as well as its association with a minimum in the distribution of Galactic radii of a sample of open clusters older than 1Gyr. The closeness of the solar orbit adius to the corotation resonance implies that the solar orbit lies inside a ring of minimum surface density (stellar + gas). This also implies a correction to larger values for the estimated total mass of the Galactic disc, and consequently, a greater contribution of the disc componente to the inner rotation curve of the Galaxy.
Resumo:
Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed
Resumo:
During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.
Resumo:
ALICE, that is an experiment held at CERN using the LHC, is specialized in analyzing lead-ion collisions. ALICE will study the properties of quarkgluon plasma, a state of matter where quarks and gluons, under conditions of very high temperatures and densities, are no longer confined inside hadrons. Such a state of matter probably existed just after the Big Bang, before particles such as protons and neutrons were formed. The SDD detector, one of the ALICE subdetectors, is part of the ITS that is composed by 6 cylindrical layers with the innermost one attached to the beam pipe. The ITS tracks and identifies particles near the interaction point, it also aligns the tracks of the articles detected by more external detectors. The two ITS middle layers contain the whole 260 SDD detectors. A multichannel readout board, called CARLOSrx, receives at the same time the data coming from 12 SDD detectors. In total there are 24 CARLOSrx boards needed to read data coming from all the SDD modules (detector plus front end electronics). CARLOSrx packs data coming from the front end electronics through optical link connections, it stores them in a large data FIFO and then it sends them to the DAQ system. Each CARLOSrx is composed by two boards. One is called CARLOSrx data, that reads data coming from the SDD detectors and configures the FEE; the other one is called CARLOSrx clock, that sends the clock signal to all the FEE. This thesis contains a description of the hardware design and firmware features of both CARLOSrx data and CARLOSrx clock boards, which deal with all the SDD readout chain. A description of the software tools necessary to test and configure the front end electronics will be presented at the end of the thesis.
Resumo:
Sterne mit einer Anfangsmasse zwischen etwa 8 und 25 Sonnenmassen enden ihre Existenz mit einer gewaltigen Explosion, einer Typ II Supernova. Die hierbei entstehende Hoch-Entropie-Blase ist ein Bereich am Rande des sich bildenden Neutronensterns und gilt als möglicher Ort für den r-Prozess. Wegen der hohen Temperatur T innerhalb der Blase ist die Materie dort vollkommen photodesintegriert. Das Verhältnis von Neutronen zu Protonen wird durch die Elektronenhäufigkeit Ye beschrieben. Die thermodynamische Entwicklung des Systems wird durch die Entropie S gegeben. Da die Expansion der Blase schnell vonstatten geht, kann sie als adiabatisch betrachtet werden. Die Entropie S ist dann proportional zu T^3/rho, wobei rho die Dichte darstellt. Die explizite Zeitentwicklung von T und rho sowie die Prozessdauer hängen von Vexp, der Expansionsgeschwindigkeit der Blase, ab. Der erste Teil dieser Dissertation beschäftigt sich mit dem Prozess der Reaktionen mit geladenen Teilchen, dem alpha-Prozess. Dieser Prozess endet bei Temperaturen von etwa 3 mal 10^9 K, dem sogenannten "alpha-reichen" Freezeout, wobei überwiegend alpha-Teilchen, freie Neutronen sowie ein kleiner Anteil von mittelschweren "Saat"-Kernen im Massenbereich um A=100 gebildet werden. Das Verhältnis von freien Neutronen zu Saatkernen Yn/Yseed ist entscheidend für den möglichen Ablauf eines r-Prozesses. Der zweite Teil dieser Arbeit beschäftigt sich mit dem eigentlichen r-Prozess, der bei Neutronenanzahldichten von bis zu 10^27 Neutronen pro cm^3 stattfindet, und innerhalb von maximal 400 ms sehr neutronenreiche "Progenitor"-Isotope von Elementen bis zum Thorium und Uran bildet. Bei dem sich anschliessendem Ausfrieren der Neutroneneinfangreaktionen bei 10^9 K und 10^20 Neutronen pro cm^3 erfolgt dann der beta-Rückzerfall der ursprünglichen r-Prozesskerne zum Tal der Stabilität. Diese Nicht-Gleichgewichts-Phase wird in der vorliegenden Arbeit in einer Parameterstudie eingehend untersucht. Abschliessend werden astrophysikalische Bedingungen definiert, unter denen die gesamte Verteilung der solaren r-Prozess-Isotopenhäufigkeiten reproduziert werden können.
Resumo:
In this thesis we describe in detail the Monte Carlo simulation (LVDG4) built to interpret the experimental data collected by LVD and to measure the muon-induced neutron yield in iron and liquid scintillator. A full Monte Carlo simulation, based on the Geant4 (v 9.3) toolkit, has been developed and validation tests have been performed. We used the LVDG4 to determine the active vetoing and the shielding power of LVD. The idea was to evaluate the feasibility to host a dark matter detector in the most internal part, called Core Facility (LVD-CF). The first conclusion is that LVD is a good moderator, but the iron supporting structure produce a great number of neutrons near the core. The second conclusions is that if LVD is used as an active veto for muons, the neutron flux in the LVD-CF is reduced by a factor 50, of the same order of magnitude of the neutron flux in the deepest laboratory of the world, Sudbury. Finally, the muon-induced neutron yield has been measured. In liquid scintillator we found $(3.2 \pm 0.2) \times 10^{-4}$ n/g/cm$^2$, in agreement with previous measurements performed at different depths and with the general trend predicted by theoretical calculations and Monte Carlo simulations. Moreover we present the first measurement, in our knowledge, of the neutron yield in iron: $(1.9 \pm 0.1) \times 10^{-3}$ n/g/cm$^2$. That measurement provides an important check for the MC of neutron production in heavy materials that are often used as shield in low background experiments.
Resumo:
Studies in regions of the nuclear chart in which the model predictions of properties of nuclei fail can bring a better understanding of the strong interaction in the nuclear medium. To such regions belongs the so called "island of inversion" centered around Ne, Na and Mg isotopes with 20 neutrons in which unexpected ground-state spins, large deformations and dense low-energy spectra appear. This is a strong argument that the magic N = 20 is not a closed shell in this area. In this thesis investigations of isotope shifts of stable 24,25,26Mg, as well as spins and magnetic moments of short-lived 29,31Mg are presented. The successful studies were performed at the ISOLDE facility at CERN using collinear laser and beta-NMR spectroscopy techniques. The isotopes were investigated as single-charged ions in the 280-nm transition from the atomic ground state 2S1/2 to one of the two lowest excited states 2P1/2,3/2 using continuous wave laser beams. The isotope-shift measurements with fluorescence detection for the three stable isotopes show that it is feasible to perform the same studies on radioactive Mg isotopes up to the "island of inversion". This will allow to determine differences in the mean charge square radii and interpret them in terms of deformation. The high detection efficiency for beta particles and optical pumping close to saturation allowed to obtain very good beta-asymmetry signals for 29Mg and 31Mg with half-lives around 1 s and production yields about 10^5 ions/s. For this purpose the ions were implanted into a host crystal lattice. Such detection of the atomic resonances revealed their hyperfine structure, which gives the sign and a first estimate of the value of the magnetic moment. The nuclear magnetic resonance gave also their g-factors with the relative uncertainty smaller than 0.2 %. By combining the two techniques also the nuclear spin of both isotopes could be unambiguously determined. The measured spins and g-factors show that 29Mg with 17 neutrons lies outside the "island of inversion". On the other hand, 31Mg with 19 neutrons has an unexpected ground-state spin which can be explained only by promoting at least two neutrons across the N = 20 shell gap. This places the above nucleus inside the "island". However, modern shell-model approaches cannot predict this level as the ground state but only as one of the low-lying states, even though they reproduce very well the experimental g-factor. This indicates that modifications to the available interactions are required. Future measurements include isotope shift measurements on radioactive Mg isotopes and beta-NMR studies on 33Mg.
Resumo:
Im Rahmen dieser Arbeit wurden Untersuchungen zur Rückstoßeffekten, sowie Ausheizversuche zur Erforschung struktureller Veränderungen und Änderung der Edelgaskonzentrationen und Ausgasungsmuster in meteoritischen Nanodiamanten durchgeführt. In der ersten Versuchsserie wurden die durch prompte "?"-Strahlung bei Neutronenaktivierung von Brom in terrestrische Detonationsdiamanten und durch den "?"-Zerfall von 22Na in synthetischen und meteoritischen Diamanten verursachten Rückstoßverluste bestimmt. Diese wurden mit theoretischen Verlustwerten, berechnet mit Hilfe der SRIM-Software und der Korngrößenverteilung, verglichen. Im Fall der prompten "?"-Strahlung war der Unterschied signifikant. Hierzu können allerdings systematische Unsicherheiten in den gemessenen Verlusten, wie z.B. unbekannte Br-Verteilung innerhalb der Diamanten beigetragen haben. Die Ergebnisse des zweiten Versuchs bei kleineren Rückstoß-Energien, wie sie auch in der Natur vorkommen würden, zeigten dagegen keinen signifikanten Unterschied. Dies führt zu der Schlussfolgerung, dass weder das „Fehlen“ einiger in Supernovae Typ II gebildeter Radionuklide, wie 26Al, 44Ti, in den Diamanten noch die in einem für die Erklärung des Xe-H vorgeschlagenen Modell benötigte frühzeitige Trennung der Vorläuferkerne stabiler Xe-Isotope von den stabilen Xe-Isotopen durch Rückstoßverluste erklärt werden kann. In der zweiten Versuchsreihe wurden meteoritische Nanodiamantproben bei unterschiedlichen Temperaturen im Vakuum vorgeheizt und danach, um die Heizprodukte zu entfernen, chemisch behandelt. Bei allen Vorheiztemperaturen wurden zwiebelähnliche Strukturen registriert und auch in den nachbehandelten Proben wurden, bedingt durch die wegen Verklumpung der Proben eingeschränkte chemische Behandlung, neben Diamanten unveränderte, oder teilweise zerstörte Umwandlungsprodukte gefunden. Weiterhin wurden Edelgaskonzentrationen und Ausgasungsmuster gemessen, um die durch Vorheizen und chemische Behandlung bedingten Veränderungen im Vergleich zu den Original-Diamanten zu untersuchen. Ein unerwartetes Ergebnis dieser Untersuchungen war, dass die vorgeheizten und chemisch nachbehandelten Proben deutlich niedrigere Ausbeuten im Vergleich zu den nur vorgeheizten zeigten, was darauf hindeutete, dass die während des Vorheizens entstandenen Umwandlungsprodukte, wie z.B. zwiebelähnliche Strukturen, Edelgase zurückhalten konnten, die später (teilweise) durch chemische Behandlung entfernt wurden.
Resumo:
The electric dipole response of neutron-rich nickel isotopes has been investigated using the LAND setup at GSI in Darmstadt (Germany). Relativistic secondary beams of 56−57Ni and 67−72Ni at approximately 500 AMeV have been generated using projectile fragmentation of stable ions on a 4 g/cm2 Be target and subsequent separation in the magnetic dipole fields of the FRagment Separator (FRS). After reaching the LAND setup in Cave C, the radioactive ions were excited electromagnetically in the electric field of a Pb target. The decay products have been measured in inverse kinematics using various detectors. Neutron-rich 67−69Ni isotopes decay by the emission of neutrons, which are detected in the LAND detector. The present analysis concentrates on the (gamma,n) and (gamma,2n) channels in these nuclei, since the proton and three-neutron thresholds are unlikely to be reached considering the virtual photon spectrum for nickel ions at 500 AMeV. A measurement of the stable 58Ni isotope is used as a benchmark to check the accuracy of the present results with previously published data. The measured (gamma,n) and (gamma,np) channels are compared with an inclusive photoneutron measurement by Fultz and coworkers, which are consistent within the respective errors. The measured excitation energy distributions of 67−69Ni contain a large portion of the Giant Dipole Resonance (GDR) strength predicted by the Thomas-Reiche-Kuhn energy-weighted sum rule, as well as a significant amount of low-lying E1 strength, that cannot be attributed to the GDR alone. The GDR distribution parameters are calculated using well-established semi-empirical systematic models, providing the peak energies and widths. The GDR strength is extracted from the chi-square minimization of the model GDR to the measured data of the (gamma,2n) channel, thereby excluding any influence of eventual low-lying strength. The subtraction of the obtained GDR distribution from the total measured E1 strength provides the low-lying E1 strength distribution, which is attributed to the Pygmy Dipole Resonance (PDR). The extraction of the peak energy, width and strength is performed using a Gaussian function. The minimization of trial Gaussian distributions to the data does not converge towards a sharp minimum. Therefore, the results are presented by a chi-square distribution as a function of all three Gaussian parameters. Various predictions of PDR distributions exist, as well as a recent measurement of the 68Ni pygmy dipole-resonance obtained by virtual photon scattering, to which the present pygmy dipole-resonance distribution is also compared.
Resumo:
Research in fundamental physics with the free neutron is one of the key tools for testing the Standard Model at low energies. Most prominent goals in this field are the search for a neutron electric dipole moment (EDM) and the measurement of the neutron lifetime. Significant improvements of the experimental performance using ultracold neutrons (UCN) require reduction of both systematic and statistical errors.rnThe development and construction of new UCN sources based on the superthermal concept is therefore an important step for the success of future fundamental physics with ultracold neutrons. rnSignificant enhancement of today available UCN densities strongly correlates with an efficient use of an UCN converter material. The UCN converter here is to be understood as a medium which reduces the velocity of cold neutrons (CN, velocity of about 600 m/s) to the velocity of UCN (velocity of about 6 m/s).rnSeveral big research centers around the world are presently planning or constructing new superthermal UCN sources, which are mainly based on the use of either solid deuterium or superfluid helium as UCN converter.rnThanks to the idea of Yu.Pokotilovsky, there exists the opportunity to build competitive UCN sources also at small research reactors of the TRIGA type. Of course these smaller facilities don't promise high UCN densities of several 1000 UCN/cm³, but they are able to provide densities around 100 UCN/cm³ for experiments.rnIn the context of this thesis, it was possible to demonstrate succesfully the feasibility of a superthermal UCN source at the tangential beamport C of the research reactor TRIGA Mainz. Based on a prototype for the future UCN source at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in munich, which was planned and built in collaboration with the Technical University of Munich, further investigations and improvements were done and are presented in this thesis. rnIn parallel, a second UCN source for the radial beamport D was designed and built. The comissioning of this new source is foreseen in spring 2010.rnAt beamport D with its higher thermal neutron flux, it should be possible to increase the available UCN densities of 4 UCN/cm³ by minimum one order of magnitude.
Resumo:
In der vorliegenden Dissertation werden die Kernreaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne im astrophysikalisch interessanten Energiebereich von E alpha = 1000 keV bis E alpha = 2450 keV untersucht.rnrnDie Experimente wurden am Nuclear Structure Laboratory der University of Notre Dame (USA) mit dem vor Ort befindlichen Van-de-Graaff Beschleuniger KN durchgeführt. Hierbei wurden Festkörpertargets mit evaporiertem Magnesium oder anodisiertem Sauerstoff mit alpha-Teilchen beschossen und die freigesetzten Neutronen untersucht. Zum Nachweis der freigesetzten Neutronen wurde mit Hilfe von Computersimulationen ein Neutrondetektor basierend auf rn3He-Zählrohren konstruiert. Weiterhin wurden aufgrund des verstärkten Auftretens von Hintergrundreaktionen verschiedene Methoden zur Datenanalyse angewendet.rnrnAbschliessend wird mit Hilfe von Netzwerkrechnungen der Einfluss der Reaktionen 25Mg(alpha,n)28Si, 26Mg(alpha,n)29Si und 18O(alpha,n)21Ne auf die stellare Nukleosynthese untersucht.rn