996 resultados para Estimadores dos mínimos quadrados
Resumo:
Comumente dados de precipitação pluvial apresentam variação e a obtenção da estimativa de sua distribuição espacial é primordial no planejamento agrícola e ambiental. O objetivo neste trabalho foi comparar o método de estimação dos mínimos quadrados ponderados para ajuste de modelos ao semivariograma com o método de tentativa e erro, através da técnica de auto-validação "jack-knifing", para dados de precipitação pluvial média anual do Estado de São Paulo. Observações de precipitação correspondentes ao período de 1957 a 1997 foram usadas para trezentos e setenta e nove (379) estações pluviométricas abrangendo todo o Estado de São Paulo, representando uma área de aproximadamente 248.808,8 km². A periodicidade exibida pelos semivariogramas foi ajustada pelo modelo "hole effect", em que os parâmetros foram estimados com maior precisão pelo método de mínimos quadrados ponderados quando comparado com o método de tentativa e erro. O método de auto-validação "jack-knifing" mostrou-se adequado para a definição de métodos e modelos a serem usados para semivariâncias, cujo procedimento permitiu definir dezesseis vizinhos como o número ideal para a estimativa por krigagem de valores de precipitação pluvial para locais não amostrados no Estado de São Paulo.
Resumo:
Este estudo investiga a otimização da resistência ao cisalhamento no plano de juntas de sobreposição co-curadas do compósito termoplástico unidirecional auto-reforçado de polietileno de baixa densidade reciclado reforçado por fibras de polietileno de ultra alto peso molecular através da relação desta resistência com os parâmetros processuais de prensagem a quente para a conformação da junta (pressão, temperatura, tempo e comprimento). A matriz teve sua estrutura química analisada para verificar potenciais degradações devidas à sua origem de reciclagem. Matriz e reforço foram caracterizados termicamente para definir a janela de temperatura de processamento de junta a ser estudada. A elaboração das condições de cura dos corpos de prova foi feita de acordo com a metodologia de Projeto de Experimento de Superfície de Resposta e a relação entre a resistência ao cisalhamento das juntas e os respectivos parâmetros de cura foi obtida através de equação de regressão gerada pelo método dos Mínimos Quadrados Ordinários. A caracterização mecânica em tração do material foi analisada micro e macromecanicamente. A análise química da matriz não demonstrou a presença de grupos carboxílicos que evidenciassem degradação por ramificações de cadeia e reticulação advindos da reciclagem do material. As metodologias de ensaio propostas demonstraram ser eficazes, podendo servir como base para a constituição de normas técnicas. Demonstrou-se que é possível obter juntas com resistência ótima ao cisalhamento de 6,88 MPa quando processadas a 1 bar, 115°C, 5 min e com 12 mm. A análise da fratura revelou que a ruptura por cisalhamento das juntas foi precedida por múltiplas fissuras longitudinais induzidas por sucessivos debondings, tanto dentro quanto fora da junta, devido à tensão transversal acumulada na mesma, proporcional a seu comprimento. A temperatura demonstrou ser o parâmetro de processamento mais relevante para a performance da junta, a qual é pouco afetada por variações na pressão e tempo de cura.
Resumo:
Biodiesel is a renewable fuel derived from vegetable oils or animal fats, which can be a total or partial substitute for diesel. Since 2005, this fuel was introduced in the Brazilian energy matrix through Law 11.097 that determines the percentage of biodiesel added to diesel oil as well as monitoring the insertion of this fuel in market. The National Agency of Petroleum, Natural Gas and Biofuels (ANP) establish the obligation of adding 7% (v/v) of biodiesel to diesel commercialized in the country, making crucial the analytical control of this content. Therefore, in this study were developed and validated methodologies based on the use of Mid Infrared Spectroscopy (MIR) and Multivariate Calibration by Partial Least Squares (PLS) to quantify the methyl and ethyl biodiesels content of cotton and jatropha in binary blends with diesel at concentration range from 1.00 to 30.00% (v/v), since this is the range specified in standard ABNT NBR 15568. The biodiesels were produced from two routes, using ethanol or methanol, and evaluated according to the parameters: oxidative stability, water content, kinematic viscosity and density, presenting results according to ANP Resolution No. 45/2014. The built PLS models were validated on the basis of ASTM E1655-05 for Infrared Spectroscopy and Multivariate Calibration and ABNT NBR 15568, with satisfactory results due to RMSEP (Root Mean Square Error of Prediction) values below 0.08% (<0.1%), correlation coefficients (R) above 0.9997 and the absence of systematic error (bias). Therefore, the methodologies developed can be a promising alternative in the quality control of this fuel.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Expõe-se alguns dos benefícios alcançados nos dois últimos anos (1987/1988) em decorrência dos resultados do estudo da definição do papel de especialistas em Educação em Saúde. A OPAS/OMS procurou identificar um local onde se pudesse definir, em termos concretos e operacionais, as responsabilidades básicas e áreas de ação dos profissionais responsáveis por ações educativas apropriadas para o sistema de saúde. Coube à Faculdade de Saúde Pública (área de Educação em Saúde) da Universidade de São Paulo a realização do mencionado estudo.
Resumo:
Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)
Resumo:
Voltamos ao tema dos quadrados mágicos. (...) Vejamos alguns exemplos curiosos. Começamos pelo Quadrado Mágico do Aniversariante (figura A). Se o leitor fizer as contas, verificará que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais do quadrado é sempre 22 (figura B). Este é, portanto, um quadrado mágico ideal para quem tem 22 anos. Contudo, a sua utilização é muito mais flexível do que à primeira vista se possa pensar. Isto porque também é possível utilizar este quadrado mágico para felicitar qualquer amigo com mais de 22 anos. Se quisermos que o quadrado da figura A tenha constante mágica igual a x, com x>22, basta adicionar a cada um dos números das quatro casas brancas o valor x-22. (...) Na figura D, apresenta-se um Quadrado Mágico Reversível. Este quadrado aparece no livro "Self-working Number Magic", de Karl Fulves, publicado em 1983. Para começar, uma observação atenta a cada linha, coluna ou diagonal do quadrado permite concluir que, em cada uma dessas filas, são utilizados os mesmos algarismos: 1, 6, 8 e 9. Um olhar ainda mais atento permite detetar duas ocorrências de cada um desses algarismos por fila. (...)
Resumo:
Existem muitos exemplos interessantes de quadrados mágicos com histórias curiosas. Desde logo, se recuarmos no tempo e viajarmos até à antiga China. Segundo reza a lenda, por volta de 2200 a.C., o imperador Yu terá avistado uma tartaruga a sair do Rio Amarelo. Essa tartaruga apresentava um intrigante padrão formado por pontos pretos e brancos, que se assemelhava a uma grelha 3x3, preenchida com os primeiros 9 números naturais (1-9), dispostos de uma forma curiosa. (...) Outro aspeto curioso prende-se com o facto de os astrólogos da Renascença usarem quadrados mágicos associados aos diferentes planetas do Sistema Solar. (...) Outro aspeto que pode ser considerado nestes quadrados mágicos planetários é a soma de todos os números que compõem o quadrado, que se designa por soma mística (esta soma obtém-se multiplicando a constante mágica pelo número total de linhas do quadrado, isto porque ao adicionar os números de qualquer linha, obtém-se sempre a constante mágica). Por exemplo, o quadrado de Saturno tem soma mística igual a 15x3=45; o de Júpiter, 34x4=136; o de Marte, 65x5=325; e o do Sol, 111x6=666. Num quadrado planetário de ordem N, utilizam-se todos os números naturais, do 1 ao NxN, uma e uma só vez. Por este motivo, e tendo em conta as propriedades das progressões aritméticas, a soma mística de um quadrado planetário de ordem N pode ser obtida da fórmula NxN(NxN+1)/2, sendo a constante mágica igual a N(NxN+1)/2. (...)
Resumo:
Clifford Alan Pickover nasceu a 15 de agosto de 1957. Este americano é um reconhecido divulgador da Ciência e da Matemática, tendo publicado até ao momento mais de quarenta livros em mais de uma dúzia de línguas. (...) O principal interesse de Pickover está em encontrar novas maneiras de expandir a criatividade, estabelecendo conexões entre áreas aparentemente díspares do esforço humano, como a Arte, a Ciência e a Matemática. (...) Em 1994, Pickover introduziu uma nova classe de números, de certa forma peculiar: os números vampiros. (...) Um número vampiro é um número natural, v, com um número par de algarismos (n), que pode ser escrito como um produto de dois números naturais, x e y, cada um com metade do número de algarismos (n/2) e de forma a que os algarismos utilizados sejam os mesmos (eventualmente escritos por ordem diferente). (...) Na fatorização de um número vampiro, apenas um dos fatores pode ser múltiplo de 10 (ou seja, apenas um dos fatores pode ter o 0 como algarismo das unidades). Assim, 1260 é um número vampiro uma vez que 1260 = 21x60, mas 126 000 já não é um número vampiro apesar de 126 000 = 210x600. Isto porque, no segundo caso, ambos os fatores são múltiplos de 10. (...) Pickover também é adepto de quadrados mágicos. (...)
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Amostras de tecidos tratadas e não tratadas com acabamento de "mínimos cuidados" (DURABLE PRESS e SOIL-RELEASE) foram analisadas e comparadas quanto à mudanças na estabilidade dimensional e resistência à tração após lavagem e secagem automática. Tanto nos tecidos acabados como nos não acabados não foi detectado um grau de alteração estatisticamente significativo na estabilidade dimensional. As amostras não acabadas apresentaram maior resistência à tração que as acabadas, tanto no sentido do fio urdume como no sentido do trama.