990 resultados para Estadística aplicada
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
UANL
Resumo:
Al objeto de establecer indicadores que informen sobre la calidad y dinámica de los procesos de enseñanza, sobre la eficacia o las diferentes variables de contexto que singularizan el modelo educativo, se analizan indicadores de escolarización y de resultados, así como el desarrollo de programas específicos, alguno de ellos, como el programa de refuerzo curricular o el bachillerato de investigación, fruto de la innovación en la Región de Murcia. La publicación incluye datos significativos y perdurables que ofrecen la oportunidad de llevar a cabo estudios específicos.
Resumo:
Observations in daily practice are sometimes registered as positive values larger then a given threshold α. The sample space is in this case the interval (α,+∞), α > 0, which can be structured as a real Euclidean space in different ways. This fact opens the door to alternative statistical models depending not only on the assumed distribution function, but also on the metric which is considered as appropriate, i.e. the way differences are measured, and thus variability
Resumo:
Estudiar la teoría modular de desarrollo curicular basada en la utilización de paquetes curriculares de aprendizaje y presentar un desarrollo práctico de una programación a partir de los sistemas de paquetes curriculares. Se hace en primer lugar un estudio teórico de la teoría modular y de otro modelo curricular denominado cognitivo. Se hace un estudio comparativo de ambos modelos viendo lo que aporta cada uno de ellos y por ultimo se presenta un ejemplo de programación de un paquete curricular. Tras este estudio teórico sería conveniente llevar a la práctica esta teoría con un grupo de alumnos y comparar con otros grupos que tengan otras programaciones para hacer comparaciones estadísticas de los datos.
Resumo:
Aportar un nuevo planteamiento de la Física y la Química en la ESO desde un enfoque ambiental que lleva implícitos dos aspectos. Por una parte es una educación en valores y por otra, considerar como premisa esencial para atender a las necesadades de todos los alumnos el basarnos en un punto de partida conocido por todos, cual es, el tratamiento de problemas que nos están afectando cotidianamente. El currículum del área de ciencias de la naturaleza en la ESO. En el primer capítulo se realiza una introducción teórica de la educación ambiental y de la educación para el desarrollo. El segundo capítulo analiza y describe los elementos básicos del currículum de la ESO en el área de Ciencias de la Naturaleza atendiendo a valores ambientales. El tercer capítulo constituye el núcleo de la propuesta de la investigación y presenta una aproximación a lo que se deben considerar valores ambientales para realizar posteriormente una análisis y exposición de las metodologías y teorías vinculadas a la enseñanza de valores ambientales. Se hace también un enfoque práctico a través de un conjunto de esquemas que proponen distintas estrategias para abordar alumnos con problemas. En este capítulo se pone de manifiesto la utilidad del cooperativismo, a través de ejemplos, técnicas y del propio juego como recurso para la adquisición de valores ambientales así como la atención a la diversidad. En el cuarto capítulo se describen dos actividades, una de ellas referida a la lluvia ácida y una segunda relacionada con la atmósfera terrestre, enfocadas al logro de valores ambientales atendiendo a la diversidad. Cuadros, esquemas. No existe un tratamiento conjunto de la educación en valores, a través de la educación ambiental, con un enfoque sobre la atención a la diversidad. Sería deseable abordar con urgencia el tratamiento de los valores ambientales en la educación y en la investigación, pero para ello es necesario desarrollar nuevas investigaciones en el campo de la docencia aplicada y en el de la investigación didáctica.
Resumo:
We take stock of the present position of compositional data analysis, of what has been achieved in the last 20 years, and then make suggestions as to what may be sensible avenues of future research. We take an uncompromisingly applied mathematical view, that the challenge of solving practical problems should motivate our theoretical research; and that any new theory should be thoroughly investigated to see if it may provide answers to previously abandoned practical considerations. Indeed a main theme of this lecture will be to demonstrate this applied mathematical approach by a number of challenging examples
Resumo:
This paper is a first draft of the principle of statistical modelling on coordinates. Several causes —which would be long to detail—have led to this situation close to the deadline for submitting papers to CODAWORK’03. The main of them is the fast development of the approach along the last months, which let appear previous drafts as obsolete. The present paper contains the essential parts of the state of the art of this approach from my point of view. I would like to acknowledge many clarifying discussions with the group of people working in this field in Girona, Barcelona, Carrick Castle, Firenze, Berlin, G¨ottingen, and Freiberg. They have given a lot of suggestions and ideas. Nevertheless, there might be still errors or unclear aspects which are exclusively my fault. I hope this contribution serves as a basis for further discussions and new developments
Resumo:
The simplex, the sample space of compositional data, can be structured as a real Euclidean space. This fact allows to work with the coefficients with respect to an orthonormal basis. Over these coefficients we apply standard real analysis, inparticular, we define two different laws of probability trought the density function and we study their main properties
Resumo:
Traditionally, compositional data has been identified with closed data, and the simplex has been considered as the natural sample space of this kind of data. In our opinion, the emphasis on the constrained nature of compositional data has contributed to mask its real nature. More crucial than the constraining property of compositional data is the scale-invariant property of this kind of data. Indeed, when we are considering only few parts of a full composition we are not working with constrained data but our data are still compositional. We believe that it is necessary to give a more precise definition of composition. This is the aim of this oral contribution
Resumo:
One of the tantalising remaining problems in compositional data analysis lies in how to deal with data sets in which there are components which are essential zeros. By an essential zero we mean a component which is truly zero, not something recorded as zero simply because the experimental design or the measuring instrument has not been sufficiently sensitive to detect a trace of the part. Such essential zeros occur in many compositional situations, such as household budget patterns, time budgets, palaeontological zonation studies, ecological abundance studies. Devices such as nonzero replacement and amalgamation are almost invariably ad hoc and unsuccessful in such situations. From consideration of such examples it seems sensible to build up a model in two stages, the first determining where the zeros will occur and the second how the unit available is distributed among the non-zero parts. In this paper we suggest two such models, an independent binomial conditional logistic normal model and a hierarchical dependent binomial conditional logistic normal model. The compositional data in such modelling consist of an incidence matrix and a conditional compositional matrix. Interesting statistical problems arise, such as the question of estimability of parameters, the nature of the computational process for the estimation of both the incidence and compositional parameters caused by the complexity of the subcompositional structure, the formation of meaningful hypotheses, and the devising of suitable testing methodology within a lattice of such essential zero-compositional hypotheses. The methodology is illustrated by application to both simulated and real compositional data
Resumo:
The Aitchison vector space structure for the simplex is generalized to a Hilbert space structure A2(P) for distributions and likelihoods on arbitrary spaces. Central notations of statistics, such as Information or Likelihood, can be identified in the algebraical structure of A2(P) and their corresponding notions in compositional data analysis, such as Aitchison distance or centered log ratio transform. In this way very elaborated aspects of mathematical statistics can be understood easily in the light of a simple vector space structure and of compositional data analysis. E.g. combination of statistical information such as Bayesian updating, combination of likelihood and robust M-estimation functions are simple additions/ perturbations in A2(Pprior). Weighting observations corresponds to a weighted addition of the corresponding evidence. Likelihood based statistics for general exponential families turns out to have a particularly easy interpretation in terms of A2(P). Regular exponential families form finite dimensional linear subspaces of A2(P) and they correspond to finite dimensional subspaces formed by their posterior in the dual information space A2(Pprior). The Aitchison norm can identified with mean Fisher information. The closing constant itself is identified with a generalization of the cummulant function and shown to be Kullback Leiblers directed information. Fisher information is the local geometry of the manifold induced by the A2(P) derivative of the Kullback Leibler information and the space A2(P) can therefore be seen as the tangential geometry of statistical inference at the distribution P. The discussion of A2(P) valued random variables, such as estimation functions or likelihoods, give a further interpretation of Fisher information as the expected squared norm of evidence and a scale free understanding of unbiased reasoning
Resumo:
One of the disadvantages of old age is that there is more past than future: this, however, may be turned into an advantage if the wealth of experience and, hopefully, wisdom gained in the past can be reflected upon and throw some light on possible future trends. To an extent, then, this talk is necessarily personal, certainly nostalgic, but also self critical and inquisitive about our understanding of the discipline of statistics. A number of almost philosophical themes will run through the talk: search for appropriate modelling in relation to the real problem envisaged, emphasis on sensible balances between simplicity and complexity, the relative roles of theory and practice, the nature of communication of inferential ideas to the statistical layman, the inter-related roles of teaching, consultation and research. A list of keywords might be: identification of sample space and its mathematical structure, choices between transform and stay, the role of parametric modelling, the role of a sample space metric, the underused hypothesis lattice, the nature of compositional change, particularly in relation to the modelling of processes. While the main theme will be relevance to compositional data analysis we shall point to substantial implications for general multivariate analysis arising from experience of the development of compositional data analysis…