930 resultados para Equilibrium topology
Resumo:
We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.
Resumo:
This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).
Resumo:
Chain topology strongly affects the static and dynamic properties of polymer melts and polymers in dilute solution. For different chain architectures, such as ring and linear polymers, the molecular size and the diffusion behavior are different. To further understand the chain topology effect on the static and dynamic properties of polymers, we focus on the tadpole polymer which consists of a cyclic chain attached with one or more linear tails. It is found that both the number and the length of linear tails play important roles on the properties of the tadpole polymers in dilute solution. For the tadpole polymers with fixed linear tail length and number, with increasing the degree of polymerization of tadpole polymers, a transition from linear-like to ring-like behavior is observed for both the static and dynamic properties.
Resumo:
The influence of molecular topology on the structural and dynamic properties of polymer chain in solution with ring structure, three-arm branched structure, and linear structure are studied by molecular dynamics simulation. At the same degree of polymerization (N), the ring-shaped chain possesses the smallest size and largest diffusion coefficient. With increasing N, the difference of the radii of gyration between the three types of polymer chains increases, whereas the difference of the diffusion coefficients among them decreases. However, the influence of the molecular topology on the static and the dynamic scaling exponents is small. The static scaling exponents decrease slightly, and the dynamic scaling exponents increase slightly, when the topology of the polymer chain is changed from linear to ring-shaped or three-arm branched architecture. The dynamics of these three types of polymer chain in solution is Zimm-like according to the dynamic scaling exponents and the dynamic structure factors.
Resumo:
A new method of measuring the mean size of solvent clusters in swollen polymer membrane is presented in this paper. This method is based on a combination of inverse gas chromatography (IGC) and equilibrium swelling. The mechanism is that weight fraction activity coefficient of solvent in swollen polymer is influenced by its clusters size. The mean clusters size of solvent in swollen polymer can be calculated as the quotient of the weight fraction activity coefficient of clustering system dividing the weigh fraction activity coefficient of non-clustering system. In this experiment, the weigh fraction activity coefficient of non-clustering system was measured with IGC. Methanol, ethanol and polyimide systems were tested with the new method at three temperatures, 20, 40, and 60degreesC. The mean clusters size of methanol in polyimide was five, four, and three at each temperature condition, respectively. Ethanol did not form clusters (the mean clusters size was one). In contrast to the inherent narrow temperature range in DSC, XRD, and FTIR methods, the temperature range in IGC and equilibrium swelling is broad. Compared with DSC. XRD. and FTIR, this new method can detect the clusters of solvent-polymer system at higher temperature.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
STRUCTURE-PROPERTY RELATIONSHIP BETWEEN HALF-WAVE POTENTIALS OF ORGANIC-COMPOUNDS AND THEIR TOPOLOGY
Resumo:
A significant correlation was found between half-wave potentials of organic compounds and their topological indices, A(x1), A(x2), and A(x3). The simplicity of calculation of the index from the connectivity in the molecular skeleton, together with the significant correlation, indicates its practical value. Good results have been obtained by using them to predict the half-wave potentials of some organic compounds.
Resumo:
Emission of europium(II) and europium(III) have been observed in SrMgF4 xEu, yTb phosphors winch are synthesized in Ar flow. The valence state of En is influenced by terbium, It is noted that the intensities of the ESR peaks corresponding to Eu2+ are increased when terbium ion is codopech this can be explained by electron transfer mechanism which is Eu3++Tb3+-->Eu2++Tb4+. And its equilibrium constant is calculated.
Resumo:
Biosorption of Cu2+ and Pb2+ by Cladophora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/ g for Cu2+ and 0.96 mmol/ g for Pb2+ at 298K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/ mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo- second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na(2)EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.
Resumo:
A new lead(II) phosphonate, Pb[(PO3)(2)C(OH)CH3]center dot H2O (1) was hydrothermally synthesized and characterized by IR, elemental analysis, UV, TGA, SEM, and single crystal X-ray diffraction analysis. X-ray crystallographic study showed that complex 1 has a two-dimensional double layered hybrid structure containing interconnected 4- and 12-membered rings and shows an unusual (5,5)-connected (4(7) . 6(3)) (4(8) .6(2)) topology. (C) 2008 Elsevier B.V. All rights reserved.