919 resultados para Environmentally adapted lubricant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct alkylation of indoles using KOH and alcohols, as initial source of the electrophile, under solvent-free conditions is a safe and environmentally benign strategy for selective modification of these structures at the C3-position, without using hazardous and difficult to handle bromide or iodide derivatives or toxic and expensive transition metal catalysts. The protocol shows a broad scope, including halogenated indoles and secondary alcohols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of mesoporous hybrid iron(III) complex–silica aerogels were prepared in one-pot synthesis by using the sol–gel coordination chemistry approach. The use of the ligands 3-(2-aminoethylamino)propyltrimethoxysilane and 2-(diphenylphosphino)ethyltriethoxysilane, both with terminal triethoxysilyl groups, were used to incorporate metal complexes in situ into the framework of silica, through their co-condensation with a silicon alkoxide during the aerogel formation. This methodology yielded optically translucent hybrid mesoporous gels with homogeneous metal incorporation and excellent textural properties. The catalytic performance of these materials was tested in the direct amination of allylic alcohols in water as a target reaction, with activities comparable or even higher than those corresponding to the homogeneous iron(III) complex. Furthermore, these catalysts were stable and maintained their catalytic activity after six reaction cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Text in Greek, with notes in English.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.