792 resultados para Energy Efficient Mobile Network
Resumo:
Thermal comfort is defined as “that condition of mind which expresses satisfaction with the thermal environment’ [1] [2]. Field studies have been completed in order to establish the governing conditions for thermal comfort [3]. These studies showed that the internal climate of a room was the strongest factor in establishing thermal comfort. Direct manipulation of the internal climate is necessary to retain an acceptable level of thermal comfort. In order for Building Energy Management Systems (BEMS) strategies to be efficiently utilised it is necessary to have the ability to predict the effect that activating a heating/cooling source (radiators, windows and doors) will have on the room. The numerical modelling of the domain can be challenging due to necessity to capture temperature stratification and/or different heat sources (radiators, computers and human beings). Computational Fluid Dynamic (CFD) models are usually utilised for this function because they provide the level of details required. Although they provide the necessary level of accuracy these models tend to be highly computationally expensive especially when transient behaviour needs to be analysed. Consequently they cannot be integrated in BEMS. This paper presents and describes validation of a CFD-ROM method for real-time simulations of building thermal performance. The CFD-ROM method involves the automatic extraction and solution of reduced order models (ROMs) from validated CFD simulations. The test case used in this work is a room of the Environmental Research Institute (ERI) Building at the University College Cork (UCC). ROMs have shown that they are sufficiently accurate with a total error of less than 1% and successfully retain a satisfactory representation of the phenomena modelled. The number of zones in a ROM defines the size and complexity of that ROM. It has been observed that ROMs with a higher number of zones produce more accurate results. As each ROM has a time to solution of less than 20 seconds they can be integrated into the BEMS of a building which opens the potential to real time physics based building energy modelling.
Resumo:
One of the core properties of Software Defined Networking (SDN) is the ability for third parties to develop network applications. This introduces increased potential for innovation in networking from performance-enhanced to energy-efficient designs. In SDN, the application connects with the network via the SDN controller. A specific concern relating to this communication channel is whether an application can be trusted or not. For example, what information about the network state is gathered by the application? Is this information necessary for the application to execute or is it gathered for malicious intent? In this paper we present an approach to secure the northbound interface by introducing a permissions system that ensures that controller operations are available to trusted applications only. Implementation of this permissions system with our Operation Checkpoint adds negligible overhead and illustrates successful defense against unauthorized control function access attempts.
Resumo:
This paper presents a new methodology for characterising the energy performance of buildings suitable for city-scale, top-down energy modelling. Building properties that have the greatest impact on simulated energy performance were identified via a review of sensitivity analysis studies. The methodology greatly simplifies the description of a building to decrease labour and simulation processing overheads. The methodology will be used in the EU FP7 INDICATE project which aims to create a master-planning tool that uses dynamic simulation to facilitate the design of sustainable, energy efficient smart cities.
Resumo:
Energy-using products (EuPs), such as domestic appliances, audio-visual and ICT equipment contribute significantly to CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. To the extent that these policies cause an increase the average production cost of EuPs, they may impose economic costs on producers, or on consumers, or on both. In this theoretical paper, an adaptation of a simple vertical product differentiation model – in which products are characterised in terms of their quality and their energy consumption – is used to analyse the impact of the different EuP polices on product innovation and to assess the resultant economic impacts on producers and consumers. It is shown that whereas the imposition of a binding product standard for energy efficiency unambiguously reduces aggregate profit and increases the average market price in the absence of any learning effects, the introduction or strengthening of demand-side measures (such as energy labelling) may reduce, or increase, aggregate profit. Even in the case where the overall impact is unambiguously negative, the effects of product innovation and learning can be in either direction.
Resumo:
Energy-using Products (EuPs) contribute significantly to the United Kingdom’s CO2 emissions, both in the domestic and non-domestic sectors. Policies that encourage the use of more energy efficient products (such as minimum performance standards, energy labelling, enhanced capital allowances, etc.) can therefore generate significant reductions in overall energy consumption and hence, CO2 emissions. While these policies can impose costs on the producers and consumers of these products in the short run, the process of product innovation may reduce the magnitude of these costs over time. If this is the case, then it is important that the impacts of innovation are taken into account in policy impact assessments. Previous studies have found considerable evidence of experience curve effects for EuP categories (e.g. refrigerators, televisions, etc.), with learning rates of around 20% for both average unit costs and average prices; similar to those found for energy supply technologies. Moreover, the decline in production costs has been accompanied by a significant improvement in the energy efficiency of EuPs. Building on these findings and the results of an empirical analysis of UK sales data for a range of product categories, this paper sets out an analytic framework for assessing the impact of EuP policy interventions on consumers and producers which takes explicit account of the product innovation process. The impact of the product innovation process can be seen in the continuous evolution of the energy class profiles of EuP categories over time; with higher energy classes (e.g. A, A+, etc.) entering the market and increasing their market share, while lower classes (e.g. E, F, etc.) lose share and then leave the market. Furthermore, the average prices of individual energy classes have declined over their respective lives, while new classes have typically entered the market at successively lower “launch prices”. Based on two underlying assumptions regarding the shapes of the “lifecycle profiles” for the relative sales and the relative average mark-ups of individual energy classes, a simple simulation model is developed that can replicate the observed market dynamics in terms of the evolution of market shares and average prices. The model is used to assess the effect of two alternative EuP policy interventions – a minimum energy performance standard and an energy-labelling scheme – on the average unit cost trajectory and the average price trajectory of a typical EuP category, and hence the financial impacts on producers and consumers.
Resumo:
Num mundo em que as redes de telecomunicações estão em constante evolução e crescimento, o consumo energético destas também aumenta. Com a evolução tanto por parte das redes como dos seus equipamentos, o custo de implementação de uma rede tem-se reduzido até ao ponto em que o maior obstáculo para o crescimento das redes é já o seu custo de manutenção e funcionamento. Nas últimas décadas têm sido criados esforços para tornar as redes cada fez mais eficientes ao nível energético, reduzindo-se assim os seus custos operacionais, como também a redução dos problemas relacionados com as fontes de energia que alimentam estas redes. Neste sentido, este trabalho tem como objectivo principal o estudo do consumo energético de redes IP sobre WDM, designadamente o estudo de métodos de encaminhamento que sejam eficientes do ponto de vista energético. Neste trabalho formalizámos um modelo de optimização que foi avaliado usando diferentes topologias de rede. O resultado da análise mostrou que na maioria dos casos é possível obter uma redução do consumo na ordem dos 25%.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
Data caching is an important technique in mobile computing environments for improving data availability and access latencies particularly because these computing environments are characterized by narrow bandwidth wireless links and frequent disconnections. Cache replacement policy plays a vital role to improve the performance in a cached mobile environment, since the amount of data stored in a client cache is small. In this paper we reviewed some of the well known cache replacement policies proposed for mobile data caches. We made a comparison between these policies after classifying them based on the criteria used for evicting documents. In addition, this paper suggests some alternative techniques for cache replacement
Resumo:
De acuerdo con el Programa de la Naciones Unidas para el Medio Ambiente (PNUMA), la producción más limpia «es una estrategia ambiental preventiva integrada que se aplica a los procesos, productos y servicios a fin de aumentar la eficiencia y reducir los riesgos para los seres humanos y el ambiente.» (Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), 2006) Esta estrategia es aplicable para cualquier proceso, producto o servicio y contiene diversas acciones que incluyen sencillos pasos que van desde pequeños cambios en los procedimientos operacionales de fácil e inmediata ejecución, hasta cambios mayores que impliquen la sustitución de materias primas, insumos o líneas de producción a unas más eficientes. De acuerdo con la investigación realizada, se formuló un plan estratégico de PML para la Universidad del Rosario que permita la conservación de las materias primas, como el agua y el manejo energético eficiente, la reducción de las materias primas toxicas, en cuanto a toxicidad y cantidad, y la reducción de emisiones y residuos que van al agua y a la atmósfera impactando el entorno a causa de los procesos que se desarrollan en la Universidad para la prestación de sus servicios. En este orden de ideas, la Producción más Limpia implementada en la Universidad requiere que se modifiquen ciertas actitudes, el desarrollo de una gestión ambiental responsable, la creación de políticas convenientes y la evaluación de nuevas opciones tecnologías que impacten de manera positiva su implementación a través de las siguientes técnicas: • Mejoras en el proceso • Buenas prácticas operativas • Mantenimiento de equipos • Reutilización y reciclaje • Cambios en la materia prima • Cambios en la tecnología De esta manera los resultados presentarán un modelo transformador para la Institución, que permita su perdurabilidad, convirtiéndola en una Universidad pionera capaz de disminuir su impacto de operaciones en la sociedad.
Resumo:
According to the Chinese State Council's "Building Energy Efficiency Management Ordinance", a large-scale investigation of energy efficiency (EE) in buildings in contemporary China has been carried out in 22 provincial capitals and major cities in China. The aim of this project is to provide reliable information for drawing up the "Decision on reinforcing building energy efficiency" by the Ministry of Construction of China. The surveyed organizations include government departments, research institutions, property developers, design institutions, construction companies, construction consultancy services companies, facility management departments, financial institutions and those which relate to the business of building energy efficiency. In addition, representatives of the media and residents were also involved. A detailed analysis of the results of the investigation concerning aspects of the cur-rent situation and trends in building energy consumption, energy efficiency strategy and the implementation of energy efficiency measures has been conducted. The investigation supplies essential information to formulate the market entrance policy for new buildings and the refurbishment policy for existing buildings to encourage the development of energy efficient technology.
Resumo:
Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e. 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.