988 resultados para Electron donor sites
Resumo:
Late Neogene biostratigraphy of diatoms has been investigated from two sites occupied during Ocean Drilling Program (ODP) Leg 186 off the coast of northeast Japan. A unique aspect of ODP Leg 186 was the installation of two permanent borehole geophysical observatories at the deep-sea terrace along the Japan Trench. The Neogene subsidence history of the forearc was documented from both Sites 1150 and 1151, and Quaternary to middle Miocene (16 Ma) sediments represent a nearly continuous stratigraphic sequence including numerous ash records, especially during the past 9 m.y. Diatoms are found in most samples in variable abundance and in a moderately well preserved state throughout the sequence. The assemblages are characterized consistently by age-diagnostic species of Denticulopsis and Neodenticula found in regions of high surface water productivity typical of middle to high latitudes. The Neogene North Pacific diatom zonation divides the Miocene to Quaternary sequences fundamentally well, except that the latest Miocene through early Pliocene Thalassiosira oestrupii Subzone is not applicable. Miocene and late Pliocene through Pleistocene diatom datum levels that have been proven to be of great stratigraphic utility in the North Pacific Ocean appear to be nearly isochronous within the level of resolution constrained by core catcher sample spacing. The taxonomy and stratigraphy of previously described species determined to be useful across the Miocene/Pliocene boundary have been investigated on the basis of the evolutionary changes within the Thalassiosira trifulta group. The biostratigraphically important forms belonging to the genus Thalassiosira have been illustrated with scanning electron micrographs.
Resumo:
Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
Resumo:
Samples were collected at Sites 1225 and 1227 to investigate the occurrence of fine-grained, biogenic magnetic particles (magnetosomes). Several magnetic methods, including anhysteretic remanent magnetization and isothermal remanent magnetization, were used to characterize the main magnetic carriers in the samples. Extracts were made to isolate the fine-grained fraction, which was then examined under a transmission electron microscope. Grains with the unique characteristics of magnetosomes were found in samples from regions in the core with both high and low concentrations of magnetic minerals. This suggests they have the potential to be a persistent proxy of paleoredox conditions.
Resumo:
Three selected diamictite samples recovered within sequence group S3 at Sites 1097 (Sample 178-1097A-27R-1, 35-58 cm) and 1103 (Samples 178-1103A-31R-2, 0-4 cm, and 36R-3, 4-8 cm) of Ocean Drilling Program Leg 178 have been investigated by scanning electron microscope, electron microprobe, and 40Ar-39Ar laser-heating techniques. They contain variable proportions of fragments of volcanic rock groundmass (mostly in the range of 100-150 µm) with textures ranging from microcrystalline to ipocrystalline. Their rounded shapes indicate mechanical reworking. Fresh groundmass glasses, recognized only in grains from samples of Site 1103, show mainly a subalkaline affinity on the basis of total alkali-silica variations. However, they are characterized by relatively high TiO2 and P2O5 contents (1.4-2.8 and 0.1-0.9 wt%, respectively). Because of the small size of homogeneous grains (100-150 µm), they were not suitable for single-grain total fusion 40Ar-39Ar analyses. The incremental laser-heating technique was applied to milligram-sized samples (only for Samples 178-1097A-27R-1, 35-58 cm, and 178-1103A-36R-3, 4-8 cm) and to various small fractions (each consisting of 10 grains for the sample from Site 1097 and 30 grains for samples from Site 1103). The latter approach resulted in more effective resolution of sample heterogeneity. Argon ages from the small fractions show significantly different ranges in the three samples: 75-173 Ma for Sample 178-1097A-27R-1, 35-58 cm, 18-57 Ma for Sample 178-1103A-31R-2, 0-4 cm, and 7.6-50 Ma for Sample 178-1103A-36R-3, 4-8 cm. Ca/K ratios derived from argon isotopes at Site 1103 suggest that the data mainly refer to outgassing of groundmass glass. At Site 1103, we observe an overall apparent age increase with decreasing sample depth. This is compatible with glacial erosion that affected with time deeper levels of a volcanic sequence previously deposited on the continent. The youngest apparent age of 7.6 ± 0.7 Ma detected close to the bottom of Hole 1103A (340 meters below seafloor [mbsf]) is compatible with the age range of the diatom Actinocyclus ingens v. ovalis Zone (6.3-8.0 Ma) determined for the interval 320-355 mbsf and with the maximum ages derived from strontium isotope composition of barnacle fragments obtained at 262-263 mbsf at the same site. Nevertheless, this age cannot be taken as the maximum youngest age of the volcanic sequence sampled by glacial erosion or as the maximum age for the deposition of the Sequence S3 at 340 mbsf unless validated by further research.
Resumo:
A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg-rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%-20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warmest site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-ablation ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity. Dioctahedral celadonite-like clays along with iron oxyhydroxide and Mg-saponite are characteristic of oxidized haloes surrounding the nonoxidized rock interiors. Chemical compositions of the clays are very similar to those determined from other deep-sea basalts altered at low temperature. The variable Mg:Fe of saponite appears to be a systematic function both of the Mg:Fe of the host rock and the oxidation state during water-rock interaction.
Resumo:
Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.
Resumo:
The fabric of sediments recovered at sites drilled on the Indus Fan, Owen Ridge, and Oman margin during Ocean Drilling Program Leg 117 was examined by scanning electron microscopy to document changes that accompany sediment burial. Two sediment types were studied: (1) biogenic sediments consisting of a variety of marly nannofossil and nannofossil oozes and chalks and (2) terrigenous sediments consisting of fine-grained turbidites deposited in association with the Indus Fan. Biogenic sediments were examined with samples from the seafloor to depths of 306 m below seafloor (mbsf) on the Owen Ridge (Site 722) and 368 mbsf on the Oman margin (Sites 723 and 728). Over these depth ranges the biogenic sediments are characterized by a random arrangement of microfossils and display little chemical diagenetic alteration. The microfossils are dispersed within a fine-grained matrix that is predominantly microcrystalline carbonate particles on the Owen Ridge and clay and organic matter on the Oman margin. Sediments with abundant siliceous microfossils display distinct, open fabrics with high porosity. Porosity reduction resulting from gravitational compaction appears to be the primary process affecting fabric change in the biogenic sediment sections. Fabric of illite-rich clayey silts and silty claystones from the Indus Fan (Site 720) and Owen Ridge (Sites 722 and 731) was examined for a composite section extending from 45 to 985 mbsf. In this section fabric of the fine-grained turbidites changes from one with small flocculated clay domains, random particle arrangement, and high porosity to a fabric with larger domains, strong preferred particle orientation roughly parallel to bedding, and lower porosity. These changes are accomplished by a growth in domain size, primarily through increasing face-to-face contacts, and by particle reorientation which is characterized by a sharp increase in alignment with bedding between 200 and 400 mbsf. Despite extensive particle reorientation, flocculated clay fabric persists in the deepest samples examined, particularly adjacent to silt grains, and the sediments lack fissility. Fabric changes over the 45-985 mbsf interval occur in response to gravitational compaction. Porosity reduction and development of preferred particle orientation in the Indus Fan and Owen Ridge sections occur at greater depths than outlined in previous fabric models for terrigenous sediments as a consequence of a greater abundance of silt and a greater abundance of illite and chlorite clays.
Resumo:
The chemical compositions of olivine, plagioclase, pyroxene, and spinel in lavas collected during Ocean Drilling Program Leg 187 in the Australian Antarctic Discordance, Southeast Indian Ridge (41°-46°S, 126°-135°E) were analyzed, and modeling of the theoretical equilibrium petrogenetic conditions between olivine and melt was conducted. The cores of larger olivine phenocrysts, particularly in the isotopic Indian-type mid-ocean-ridge basalt (MORB), are not equilibrated with melt compositions and are considered to be xenocrystic. Larger plagioclase phenocrysts with compositionally reversed zonation are also xenocrystic. The compositions of primary magma were calculated using a "maximum olivine fractionation" model for primitive MORB that should fractionate only olivine. Olivine compositions equilibrated with calculated primary magma and compositions of calculated primary magma suggest that (1) isotopic Pacific-type MORB is more fractionated than Indian-type MORB, (2) Pacific-type MORB was produced by higher degrees of partial melting than Indian-type MORB, and (3) primary magma for Indian-type MORB was segregated from mantle at 10 kbar (~30 km depth), whereas that for Pacific-type MORB was segregated at 15 kbar (~45 km depth).
Resumo:
Secondary minerals filling veins and vesicles in volcanic basement at Deep Sea Drilling Project Sites 458 and 459 indicate that there were two stages of alteration at each site: an early oxidative, probably hydrothermal, stage and a later, low-temperature, less oxidative stage, probably contemporaneous with faulting in the tectonically active Mariana forearc region. The initial stage is most evident in Hole 459B, where low-Al, high Fe smectites and iron hydroxides formed in vesicles in pillow basalts and low-Al palygorskite formed in fractures. Iron hydroxides and celadonite formed in massive basalts next to quartz-oligoclase micrographic intergrowths. Palygorskite was found in only one sample near the top of basement in Hole 458, but it too is associated with iron hydroxides. Palygorskite has previously been reported only in marine sediments in DSDP and other occurrences. It evidently formed here as a precipitate from fluids in which Si, Mg, Fe, and even some Al were concentrated. Experimental data suggest that the solutions probably had high pH and somewhat elevated temperatures. The compositions of associated smectites resemble those in hydrothermal sediments and in basalts at the Galapagos mounds geothermal field. The second stage of alteration was large-scale replacement of basalt by dioctahedral, trioctahedral, or mixed-layer clays and phillipsite along zones of intense fracturing, especially near the bottom of Holes 458 and 459B. The basalts are commonly slickensided, and there are recemented microfault offsets in overlying sediments. Native copper occurs in one core of Hole 458, but associated smectites are dominantly dioctahedral, unlike Hole 459B, where they are mainly trioctahedral, indicating nonoxidative alteration. The alteration in both holes is more intense than at most DSDP ocean crust sites and may have been augmented by water derived from subducting ocean crust beneath the fore-arc region.