958 resultados para Electric power factor measurement
Resumo:
This work presents a case study on technology assessment for power quality improvement devices. A system compatibility test protocol for power quality mitigation devices was developed in order to evaluate the functionality of three-phase voltage restoration devices. In order to validate this test protocol, the micro-DVR, a reduced power development platform for DVR (dynamic voltage restorer) devices, was tested and the results are discussed based on voltage disturbances standards. (C) 2011 Elsevier B.V. All rights reserved.
A decentralized approach for optimal reactive power dispatch using a Lagrangian decomposition method
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards. The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter. A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40W-T12 (200W output power), 220Vrms input voltage, 130Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Experimental results are also presented. The THD at input current is equal to 6.41%, for an input voltage THD equal to 2.14%, and the measured overall efficiency is about 92.8%, at rated load.
Resumo:
This letter presents an approach for a geometrical solution of an optimal power flow (OPF) problem for a two-bus system (slack and PV busses). The algebraic equations for the calculation of the Lagrange multipliers and for the minimum losses value are obtained. These equations are used to validate the results obtained using an OPF program.
Resumo:
This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differenceβ - γ in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35μn CMOS process and VDD=3.3V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a Mode-operating OTA is used, the procedure can be extended to other types of transconductor.
Resumo:
The paper explains the conceptual design of instrumentation that measures electric quantities defined in the trial-use Std. 1459-2000. It is shown how the Instantaneous-Space-Phasor (ISP) approach, based on α, β, 0 components, can be used to monitor electric energy flow, evaluate the utilization of transmission line and quantify the level of harmonic pollution injected by nonlinear loads.
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
In this work the problem of defects location in power systems is formulated through a binary linear programming (BLP) model based on alarms historical database of control and protection devices from the system control center, sets theory of minimal coverage (AI) and protection philosophy adopted by the electric utility. In this model, circuit breaker operations are compared to their expected states in a strictly mathematical manner. For solving this BLP problem, which presents a great number of decision variables, a dedicated Genetic Algorithm (GA), is proposed. Control parameters of the GA, such as crossing over and mutation rates, population size, iterations number and population diversification, are calibrated in order to obtain efficiency and robustness. Results for a test system found in literature, are presented and discussed. © 2004 IEEE.
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
An analysis of the performances of three important methods for generators and loads loss allocation is presented. The discussed methods are: based on pro-rata technique; based on the incremental technique; and based on matrices of circuit. The algorithms are tested considering different generation conditions, using a known electric power system: IEEE 14 bus. Presented and discussed results verify: the location and the magnitude of generators and loads; the possibility to have agents well or poorly located in each network configuration; the discriminatory behavior considering variations in the power flow in the transmission lines. © 2004 IEEE.
Resumo:
In some applications like fault analysis, fault location, power quality studies, safety analysis, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of particular interest. In order to investigate effects of neutrals and system grounding on the operation of the distribution feeders with faults, in this research a hybrid short circuit algorithm is generalized. In this novel use of the technique, the neutral wire and assumed ground conductor are explicitly represented. Results obtained from several case studies using IEEE 34-node test network are presented and discussed.
A new method for real time computation of power quality indices based on instantaneous space phasors
Resumo:
One of the important issues about using renewable energy is the integration of dispersed generation in the distribution networks. Previous experience has shown that the integration of dispersed generation can improve voltage profile in the network, decrease loss etc. but can create safety and technical problems as well, This work report the application of the instantaneous space phasors and the instantaneous complex power in observing performances of the distribution networks with dispersed generators in steady state. New IEEE apparent power definition, the so called Buccholz-Goodhue apparent power, as well as new proposed power quality (oscillation) index in the three-phase distribution systems with unbalanced loads and dispersed generators, are applied. Results obtained from several case studies using IEEE 34 nodes test network are presented and discussed.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
The problem of power system stability including the effects of a flexible alternating current transmission system (FACTS) is approached. First, the controlled series compensation is considered in the machine against infinite bar system and its effects are taken into account by means of construction of a Lyapunov function (LF). This simple system is helpful in order to understand the form the device affects dynamic and transient performance of the power system. After, the multimachine case is considered and it is shown that the single-machine results apply to multimachine systems. An energy-form Lyapunov function is derived for the power system including the FACTS device and it is used to analyse damping and synchronizing effects due to the FACTS device in single-machine as well as in multimachine power systems. © 2005 Elsevier Ltd. All rights reserved.