969 resultados para Elastic plates and shells
Resumo:
The effects of a thermal residual stress field on fatigue crack growth in a silicon carbide particle-reinforced aluminum alloy have been measured. Stress fields were introduced into plates of material by means of a quench from a solution heat-treatment temperature. Measurements using neutron diffraction have shown that this introduces an approximately parabolic stress field into the plates, varying from compressive at the surfaces to tensile in the center. Long fatigue cracks were grown in specimens cut from as-quenched plates and in specimens which were given a stress-relieving overaging heat treatment prior to testing. Crack closure levels for these cracks were determined as a function of the position of the crack tip in the residual stress field, and these are shown to differ between as-quenched and stress-relieved samples. By monitoring the compliance of the specimens during fatigue cycling, the degree to which the residual stresses close the crack has been evaluated. © 1995 The Minerals, Metals & Material Society.
Resumo:
The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^
Resumo:
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.
Resumo:
Hydroxyapatite (HA) has received wide attention in orthopedics, due to its biocompatibility and osseointegration ability. Despite these advantages, the brittle nature and low fracture toughness of HA often results in rapid wear and premature fracture of implant. Hence, there is a need to improve the fracture toughness and wear resistance of HA without compromising its biocompatibility. ^ The aim of the current research is to explore the potential of nanotubes as reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) composites and coatings are synthesized by spark plasma sintering and plasma spraying respectively, and investigated for their mechanical, tribological and biological behavior. CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) of HA for coating and free standing composites. CNTs have demonstrated a positive influence on the proliferation, differentiation and matrix mineralization activities of osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated titanium implant in animal model (rat) shows excellent histocompatibility and neobone integration on the implant surface. The improved osseointegration due to presence of CNTs in HA is quantified by the adhesion strength measurement of single osteoblast using nano-scratch technique. ^ Considering the ongoing debate about cytotoxicity of CNTs in the literature, the present study also suggests boron nitride nanotube (BNNT) as an alternative reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness (∼85%) and wear resistance (∼75%) of HA in the similar range as HA-CNT composites. BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite formability of BNNT surface in ∼4 days establishes its osseointegration ability.^
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
Corvio sandstone is a ~20 m thick unit (Corvio Formation) that appears in the top section of the Frontada Formation (Campoó Group; Lower Cretaceous) located in Northern Spain in the southern margin of the Basque-Cantabrian Basin. Up to 228 plugs were cored from four 0.3 x 0.2 x 0.5 m blocks of Corvio sandstone, to perform a comprehensive characterization of the physical, mineralogical, geomechanical, geophysical and hydrodynamic properties of this geological formation, and the anisotropic assessment of the most relevant parameters. Here we present the first data set obtained on 53 plugs which covers (i) basic physical and chemical properties including density, porosity, specific surface area and elementary analysis (XRF - CHNS); (ii) the curves obtained during unconfined and confined strengths tests, the tensile strengths, the calculated static elastic moduli and the characteristic stress levels describing the brittle behaviour of the rock; (iii) P- and S-wave velocities (and dynamic elastic moduli) and their respective attenuation factors Qp and Qs, electrical resistivity for a wide range of confining stress; and (iv) permeability and transport tracer tests. Furthermore, the geophysical, permeability and transport tests were additionally performed along the three main orthogonal directions of the original blocks, in order to complete a preliminary anisotropic assessment of the Corvio sandstone.
Resumo:
An area of about 22,000 km² on the northern Blake Plateau, off the coast of South Carolina, contains an estimated 2 billion metric tons of phosphorite concretions, and about 1.2 billion metric tons of mixed ferromanganese-phosphorite pavement. Other offshore phosphorites occur between the Blake Plateau and known continental deposits, buried under variable thicknesses of sediments. The phosphorite resembles other marine phosphorites in composition, consisting primarily of carbonate-fluorapatite, some calcite, minor quartz and other minerals. The apatite is optically pseudo-isotropic and contains about 6% [CO3]**2- replacing [PO4]**3- in its structure. JOIDES drillings and other evidence show that the phosphorite is a lag deposit derived from Miocene strata correlatable with phosphatic Middle Tertiary sediments on the continent. It has undergone variable cycles of erosion, reworking, partial dissolution and reprecipitation. Its present form varies from phosphatized carbonate debris, loose pellets, and pebbles, to continuous pavements, plates, and conglomeratic boulders weighing hundreds of kilograms. No primary phosphatization is currently taking place on the Blake Plateau. The primary phosphate-depositing environment involved reducing conditions and required at least temporary absence of the powerful Gulf Stream current that now sweeps the bottom of the Blake Plateau and has eroded away the bulk of the Hawthorne-equivalent sediments with which the phosphorites were once associated.
Resumo:
Ultrasonic P wavc transmission seismograms recorded on sediment cores have been analyzed to study the acoustic and estimate the clastic properties of marine sediments from different provinces dominated by terrigenous, calcareous, amI diatomaceous sedimentation. Instantaneous frequencies computed from the transmission seismograms are displayed as gray-shaded images to give an acoustic overview of the lithology of each core. Ccntirneter-scale variations in the ultrasonic waveforms associated with lithological changes are illustrated by wiggle traces in detail. Cross-correlation, multiple-filter, and spectral ratio techniques are applied to derive P wave velocities and attenuation coefficients. S wave velocities and attenuation coefficients, elastic moduli, and permeabilities are calculated by an inversion scheme based on the Biot-Stoll viscoelastic model. Together wilh porosity measurements, P and S wave scatter diagrams are constructed to characterize different sediment types by their velocity- and attenuation-porosity relationships. They demonstrate that terrigenous, calcareous, and diatomaceous sediments cover different velocity- and attenuation-porosity ranges. In terrigcnous sediments, P wave vclocities and attenuation coefficients decrease rapidly with increasing porosity, whereas S wave velocities and shear moduli are very low. Calcareous sediments behave similarly at relatively higher porosities. Foraminifera skeletons in compositions of terrigenous mud and calcareous ooze cause a stiffening of the frame accompanied by higher shear moduli, P wave velocities, and attenuation coefficients. In diatomaceous ooze the contribution of the shear modulus becomes increasingly important and is controlled by the opal content, whereas attenuation is very low. This leads to the opportunity to predict the opal content from nondestructive P wave velocity measurements at centimeter-scale resolution.
Resumo:
Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.
Resumo:
Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.
Resumo:
An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.
Resumo:
Genetic mutations can cause a wide range of diseases, e.g. cancer. Gene therapy has the potential to alleviate or even cure these diseases. One of the many gene therapies developed so far is RNA-cleaving deoxyribozymes, short DNA oligonucleotides that specifically bind to and cleave RNA. Since the development of these synthetic catalytic oligonucleotides, the main way of determining their cleavage kinetics has been through the use of a laborious and error prone gel assay to quantify substrate and product at different time-points. We have developed two new methods for this purpose. The first one includes a fluorescent intercalating dye, PicoGreen, which has an increased fluorescence upon binding double-stranded oligonucleotides; during the course of the reaction the fluorescence intensity will decrease as the RNA is cleaved and dissociates from the deoxyribozyme. A second method was developed based on the common denominator of all nucleases, each cleavage event exposes a single phosphate of the oligonucleotide phosphate backbone; the exposed phosphate can simultaneously be released by a phosphatase and directly quantified by a fluorescent phosphate sensor. This method allows for multiple turnover kinetics of diverse types of nucleases, including deoxyribozymes and protein nucleases. The main challenge of gene therapy is often the delivery into the cell. To bypass cellular defenses researchers have used a vast number of methods; one of these are cell-penetrating peptides which can be either covalently coupled to or non-covalently complexed with a cargo to deliver it into a cell. To further evolve cell-penetrating peptides and understand how they work we developed an assay to be able to quickly screen different conditions in a high-throughput manner. A luciferase up- and downregulation experiment was used together with a reduction of the experimental time by 1 day, upscaling from 24- to 96-well plates and the cost was reduced by 95% compared to commercially available assays. In the last paper we evaluated if cell-penetrating peptides could be used to improve the uptake of an LNA oligonucleotide mimic of GRN163L, a telomerase-inhibiting oligonucleotide. The combination of cell-penetrating peptides and our mimic oligonucleotide lead to an IC50 more than 20 times lower than that of GRN163L.
Resumo:
The analysis of steel and composite frames has traditionally been carried out by idealizing beam-to-column connections as either rigid or pinned. Although some advanced analysis methods have been proposed to account for semi-rigid connections, the performance of these methods strongly depends on the proper modeling of connection behavior. The primary challenge of modeling beam-to-column connections is their inelastic response and continuously varying stiffness, strength, and ductility. In this dissertation, two distinct approaches—mathematical models and informational models—are proposed to account for the complex hysteretic behavior of beam-to-column connections. The performance of the two approaches is examined and is then followed by a discussion of their merits and deficiencies. To capitalize on the merits of both mathematical and informational representations, a new approach, a hybrid modeling framework, is developed and demonstrated through modeling beam-to-column connections. Component-based modeling is a compromise spanning two extremes in the field of mathematical modeling: simplified global models and finite element models. In the component-based modeling of angle connections, the five critical components of excessive deformation are identified. Constitutive relationships of angles, column panel zones, and contact between angles and column flanges, are derived by using only material and geometric properties and theoretical mechanics considerations. Those of slip and bolt hole ovalization are simplified by empirically-suggested mathematical representation and expert opinions. A mathematical model is then assembled as a macro-element by combining rigid bars and springs that represent the constitutive relationship of components. Lastly, the moment-rotation curves of the mathematical models are compared with those of experimental tests. In the case of a top-and-seat angle connection with double web angles, a pinched hysteretic response is predicted quite well by complete mechanical models, which take advantage of only material and geometric properties. On the other hand, to exhibit the highly pinched behavior of a top-and-seat angle connection without web angles, a mathematical model requires components of slip and bolt hole ovalization, which are more amenable to informational modeling. An alternative method is informational modeling, which constitutes a fundamental shift from mathematical equations to data that contain the required information about underlying mechanics. The information is extracted from observed data and stored in neural networks. Two different training data sets, analytically-generated and experimental data, are tested to examine the performance of informational models. Both informational models show acceptable agreement with the moment-rotation curves of the experiments. Adding a degradation parameter improves the informational models when modeling highly pinched hysteretic behavior. However, informational models cannot represent the contribution of individual components and therefore do not provide an insight into the underlying mechanics of components. In this study, a new hybrid modeling framework is proposed. In the hybrid framework, a conventional mathematical model is complemented by the informational methods. The basic premise of the proposed hybrid methodology is that not all features of system response are amenable to mathematical modeling, hence considering informational alternatives. This may be because (i) the underlying theory is not available or not sufficiently developed, or (ii) the existing theory is too complex and therefore not suitable for modeling within building frame analysis. The role of informational methods is to model aspects that the mathematical model leaves out. Autoprogressive algorithm and self-learning simulation extract the missing aspects from a system response. In a hybrid framework, experimental data is an integral part of modeling, rather than being used strictly for validation processes. The potential of the hybrid methodology is illustrated through modeling complex hysteretic behavior of beam-to-column connections. Mechanics-based components of deformation such as angles, flange-plates, and column panel zone, are idealized to a mathematical model by using a complete mechanical approach. Although the mathematical model represents envelope curves in terms of initial stiffness and yielding strength, it is not capable of capturing the pinching effects. Pinching is caused mainly by separation between angles and column flanges as well as slip between angles/flange-plates and beam flanges. These components of deformation are suitable for informational modeling. Finally, the moment-rotation curves of the hybrid models are validated with those of the experimental tests. The comparison shows that the hybrid models are capable of representing the highly pinched hysteretic behavior of beam-to-column connections. In addition, the developed hybrid model is successfully used to predict the behavior of a newly-designed connection.
Resumo:
The purpose of this thesis is to provide research, supporting paperwork, production photographs and other materials that document the scenic design process for James and the Giant Peach at Adventure Theatre MTC. This thesis contains the following: concept statement, scenic research images collected to express location, and the emotional/ intellectual/ psychological landscapes for the production, preliminary sketches, photographs of the ¼” scale model, drafting plates and supporting paint elevations to communicate the design, prop list and accompanying research, archival production photographs to document the completed design, and finally periodical reviews of the show.
Resumo:
The purpose of this thesis is to provide research, supporting paperwork, production photographs, and other materials that document the scenic design process for the production of William Shakespeare’s Troilus & Cressida by the University of Maryland – College Park, School of Theater, Dance, and Performance Studies. This thesis contains the following: scenic research images collected to express period, location, and emotional/intellectual landscapes to the production team; preliminary sketches; photographs of the ¼” scale model; a full set of drafting plates and paint elevations used to communicate the design to the technical director and paint charge; a unit list naming each scenic element; a props list and research book to detail each hand prop, furniture piece and consumable to the prop master; and, lastly, archival production photographs to document the completed design.