917 resultados para Ecosystems temporary
Resumo:
Despite a growing awareness that the herbaceous layer serves a special role in maintaining the structure and function of forests, this stratum remainsan underappreciated aspect of forest ecosystems. In this article I review and synthesize information concerning the herb layer’s structure,composition, and dynamics to emphasize its role as an integral component of forest ecosystems. Because species diversity is highest in the herb layeramong all forest strata, forest biodiversity is largely a function of the herb-layer community. Competitive interactions within the herb layer candetermine the initial success of plants occupying higher strata, including the regeneration of dominant overstory tree species. Furthermore, the herblayer and the overstory can become linked through parallel responses to similar environmental gradients. These relationships between strata varyboth spatially and temporally. Because the herb layer responds sensitively to disturbance across broad spatial and temporal scales, its dynamics canprovide important information regarding the site characteristics of forests, including patterns of past land-use practices. Thus, the herb layer has asignificance that belies its diminutive stature.
Resumo:
BACKGROUND: Coronary stents improve immediate and late results of balloon angioplasty by tacking up dissections and preventing wall recoil. These goals are achieved within weeks after angioplasty, but with current technology stents permanently remain in the artery, with many limitations including the need for long-term antiplatelet treatment to avoid thrombosis. We report a prospective multicentre clinical trial of coronary implantations of absorbable magnesium stents. METHODS: We enrolled 63 patients (44 men; mean age 61.3 [SD 9.5 years]) in eight centres with single de novo lesions in a native coronary artery in a multicentre, non-randomised prospective study. Follow-up included coronary angiography and intravascular ultrasound at 4 months and clinical assessment at 6 months and 12 months. The primary endpoint was cardiac death, non-fatal myocardial infarction, or clinically driven target lesion revascularisation at 4 months FINDINGS: 71 stents, 10-15 mm in length and 3.0-3.5 mm in diameter, were successfully implanted after pre-dilatation in 63 patients. Diameter stenosis was reduced from 61.5 (SD 13.1%) to 12.6 (5.6%) with an acute gain of 1.41 mm (0.46 mm) and in-stent late loss of 1.08 mm (0.49 mm). The ischaemia-driven target lesion revascularisation rate was 23.8% after 4 months, and the overall target lesion revascularisation rate was 45% after 1 year. No myocardial infarction, subacute or late thrombosis, or death occurred. Angiography at 4 months showed an increased diameter stenosis of 48.4 (17.0%). After serial intravascular ultrasound examinations, only small remnants of the original struts were visible, well embedded into the intima. Neointimal growth and negative remodelling were the main operating mechanisms of restenosis. INTERPRETATION: This study shows that biodegradable magnesium stents can achieve an immediate angiographic result similar to the result of other metal stents and can be safely degraded after 4 months. Modifications of stent characteristics with prolonged degradation and drug elution are currently in development.
Resumo:
Invasive and exotic species present a serious threat to the health and sustainability of natural ecosystems. These species often benefit from anthropogenic activities that aid their introduction and dispersal. This dissertation focuses on invasion dynamics of the emerald ash borer, native to Asia, and European earthworms. These species have shown detrimental impacts in invaded forest ecosystems across the Great Lakes region, and continue to spread via human-assisted long distance dispersal and by natural modes of dispersal into interior forests from areas of introduction. Successful forest management requires that the impact and effect of invasive species be considered and incorporated into management plans. Understanding patterns and constraints of introduction, establishment, and spread will aid in this effort. To assist in efforts to locate introduction points of emerald ash borer, a multicriteria risk model was developed to predict the highest risk areas. Important parameters in the model were road proximity, land cover type, and campground proximity. The model correctly predicted 85% of known emerald ash borer invasion sites to be at high risk. The model’s predictions across northern Michigan can be used to focus and guide future monitoring efforts. Similar modeling efforts were applied to the prediction of European earthworm invasion in northern Michigan forests. Field sampling provided a means to improve upon modeling efforts for earthworms to create current and future predictions of earthworm invasion. Those sites with high soil pH and high basal area of earthworm preferred overstory species (such as basswood and maples) had the highest likelihood of European earthworm invasion. Expanding beyond Michigan into the Upper Great Lakes region, earthworm populations were sampled across six National Wildlife Refuges to identify potential correlates and deduce specific drivers and constraints of earthworm invasion. Earthworm communities across all refuges were influenced by patterns of anthropogenic activity both within refuges and in surrounding ecoregions of study. Forest composition, soil pH, soil organic matter, anthropogenic cover, and agriculture proximity also proved to be important drivers of earthworm abundance and community composition. While there are few management options to remove either emerald ash borer or European earthworms from forests after they have become well established, prevention and early detection are important and can be beneficial. An improved understanding the factors controlling the distribution and invasion patterns of exotic species across the landscape will aid efforts to determine their consequences and generate appropriate forest management solutions to sustain ecosystem health in the presence of these invaders.
Resumo:
Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.
Resumo:
A subset of forest management techniques, termed ecological forestry, have been developed in order to produce timber and maintain the ecological integrity of forest communities through practices that more closely mirror natural disturbance regimes. Even though alternative methods have been described and tested, these approaches still need to be established and analyzed in a variety of geographic regions in order to calibrate and measure effectiveness across different forest types. The primary objective of this research project was to assess whether group selection combined with legacy-tree retention could enhance mid-tolerant tree recruitment in a late-successional northern hardwood forest. In order to evaluate a novel alternative regeneration technique, 49 group-selection openings in three size classes were created in 2003 with a biological legacy tree retained in the center of each opening. Twenty reference sites, managed using single-tree selection, were also analyzed for comparison. The specific goals of the project were to: 1) determine the fate and persistence of the openings and legacy trees 2) assess the understory response of the group-selection openings versus the single-tree selection reference sites, and 3) evaluate the spatial patterns of yellow birch (Betula alleghaniensis Britt.) and eastern hemlock (Tsuga canadensis (L.) Carr.) in the group-selection openings. The results from 8-9 years post-study implementation and the changes that have occurred between 2004/5 and 2011/12 are discussed. The alternative regeneration technique developed and assessed in this study has the potential to enrich biodiversity in a range of forest types. Projected group-selection opening persistence rates ranged from 41-91 years. Openings from 500-1500 m2 are predicted to persist long enough for mid-tolerant tree recruitment. The legacy trees responded well to release and experienced a low mortality rate. Yellow birch (the primary shade mid-tolerant tree in the study area) densities increased with opening size. Maples surpassed all other species in abundance. In the sapling layer, sugar maple (Acer saccharum Marsh.) was 2 to over 300 times more abundant in the group-selection openings and 2 to 3 times more abundant in the references sites than all other species present. Red maple (Acer rubrum L.) was the second most abundant species present in the openings and reference sites. Spatial patterns of yellow birch and eastern hemlock in the openings were mostly aggregated. The southern edges of the largest openings contained the highest magnitude of yellow birch and eastern hemlock per unit area. Continued monitoring and additional treatments will likely be necessary in order to ensure underrepresented species successfully reach maturity.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
BACKGROUND: Transient neurological dysfunction (TND) consists of postoperative confusion, delirium and agitation. It is underestimated after surgery on the thoracic aorta and its influence on long-term quality of life (QoL) has not yet been studied. This study aimed to assess the influence of TND on short- and long-term outcome following surgery of the ascending aorta and proximal arch. METHODS: Nine hundred and seven patients undergoing surgery of the ascending aorta and the proximal aortic arch at our institution were included. Two hundred and ninety patients (31.9%) underwent surgery because of acute aortic dissection type A (AADA) and 617 patients because of aortic aneurysm. In 547 patients (60.3%) the distal anastomosis was performed using deep hypothermic circulatory arrest (DHCA). TND was defined as a Glasgow coma scale (GCS) value <13. All surviving patients had a clinical follow up and QoL was assessed with an SF-36 questionnaire. RESULTS: Overall in-hospital mortality was 8.3%. TND occurred in 89 patients (9.8%). As compared to patients without TND, those who suffered from TND were older (66.4 vs 59.9 years, p<0.01) underwent more frequently emergent procedures (53% vs 32%, p<0.05) and surgery under DHCA (84.3% vs 57.7%, p<0.05). However, duration of DHCA and extent of surgery did not influence the incidence of TND. In-hospital mortality in the group of patients with TND compared to the group without TND was similar (12.0% vs 11.4%; p=ns). Patients with TND suffered more frequently from coronary artery disease (28% vs 20.8%, p=ns) and were more frequently admitted in a compromised haemodynamic condition (23.6% vs 9.9%, p<0.05). Postoperative course revealed more pulmonary complications such as prolonged mechanical ventilation. Additional to their transient neurological dysfunction, significantly more patients had strokes with permanent neurological loss of function (14.6% vs 4.8%, p<0.05) compared to the patients without TND. ICU and hospital stay were significantly prolonged in TND patients (18+/-13 days vs 12+/-7 days, p<0.05). Over a mean follow-up interval of 27+/-14 months, patients with TND showed a significantly impaired QoL. CONCLUSION: The neurological outcome following surgery of the ascending aorta and proximal aortic arch is of paramount importance. The impact of TND on short- and long-term outcome is underestimated and negatively affects the short- and long-term outcome.
Resumo:
The research described in this presentation is part of the Global Observation Research Initiative in Alpine Environments (GLORIA) whose purpose is to establish and maintain a global, long-term observation network in alpine environments. Despite changes in mountaintop-vegetation due to recent climate change being observed throughout the world, trends are not consistent. Moreover, as plant communities can be impacted by several different factors, it is important to be able to separate what is due to climate change and what is due to e.g. changes in grazing pressure (see additional file below).
Resumo:
Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.
Resumo:
AIM: The purpose of this study was to systematically review the literature on the survival rates of palatal implants, Onplants((R)), miniplates and mini screws. MATERIAL AND METHODS: An electronic MEDLINE search supplemented by manual searching was conducted to identify randomized clinical trials, prospective and retrospective cohort studies on palatal implants, Onplants((R)), miniplates and miniscrews with a mean follow-up time of at least 12 weeks and of at least 10 units per modality having been examined clinically at a follow-up visit. Assessment of studies and data abstraction was performed independently by two reviewers. Reported failures of used devices were analyzed using random-effects Poisson regression models to obtain summary estimates and 95% confidence intervals (CI) of failure and survival proportions. RESULTS: The search up to January 2009 provided 390 titles and 71 abstracts with full-text analysis of 34 articles, yielding 27 studies that met the inclusion criteria. In meta-analysis, the failure rate for Onplants((R)) was 17.2% (95% CI: 5.9-35.8%), 10.5% for palatal implants (95% CI: 6.1-18.1%), 16.4% for miniscrews (95% CI: 13.4-20.1%) and 7.3% for miniplates (95% CI: 5.4-9.9%). Miniplates and palatal implants, representing torque-resisting temporary anchorage devices (TADs), when grouped together, showed a 1.92-fold (95% CI: 1.06-2.78) lower clinical failure rate than miniscrews. CONCLUSION: Based on the available evidence in the literature, palatal implants and miniplates showed comparable survival rates of >or=90% over a period of at least 12 weeks, and yielded superior survival than miniscrews. Palatal implants and miniplates for temporary anchorage provide reliable absolute orthodontic anchorage. If the intended orthodontic treatment would require multiple miniscrew placement to provide adequate anchorage, the reliability of such systems is questionable. For patients who are undergoing extensive orthodontic treatment, force vectors may need to be varied or the roots of the teeth to be moved may need to slide past the anchors. In this context, palatal implants or miniplates should be the TADs of choice.
Resumo:
BACKGROUND: Decompressive laparotomy followed by temporary abdominal closure (TAC) is an established prophylaxis and treatment for abdominal compartment syndrome. The herein presented study aimed at the comparison of volume reserve capacity and development of intra-abdominal hypertension after forced primary abdominal closure and different TAC techniques in a porcine model. METHODS: Eight anesthesized and mechanically ventilated domestic pigs underwent a standardized midline laparotomy. A bag was placed into the abdominal cavity. Before abdominal closure, the bag was prefilled with 3,000 mL water to simulate increased intra-abdominal volume. The intra-abdominal pressure (IAP) was then increased in 2 mm Hg steps up to 30 mm Hg by adding volume (volume reserve capacity) to the intra-abdominal bag. Volume reserve capacity with the corresponding IAP were analyzed and compared for primary abdominal closure, bag silo closure, a zipper system, and vacuum-assisted closure (VAC) with different negative pressures (-50, -100, and -150 mm Hg). Hemodynamic and pulmonary parameters were monitored throughout the experiment. RESULTS: Volume reserve capacity was the highest for bag silo closure followed by the zipper system and VAC with primary abdominal closure providing the least volume reserve capacity in the whole IAP range. Of interest, VAC -50 mm Hg resulted in a lower volume reserve capacity when compared with VAC -100 and -150 mm Hg. Pulmonary and hemodynamic parameters demonstrated no significant differences between primary abdominal closure and the evaluated TAC techniques at all IAP levels. CONCLUSIONS: The present experimental in vivo study indicates that bag silo closure and zipper systems may be favorable TAC techniques after decompressive laparotomy. In contrast, the VAC techniques resulted in lower volume reserve capacity and therefore may bear an increased risk for recurrent intra-abdominal hypertension in the initial phase after decompressive laparotomy.