929 resultados para EVEN NUMBERS
Resumo:
Earthworms secrete granules of calcium carbonate. These are potentially important in soil biogeochemical cycles and are routinely recorded in archaeological studies of Quaternary soils. Production rates of calcium carbonate granules by the earthworm Lumbricus terrestris L. were determined over 27 days in a range of soils with differing chemical properties (pH, organic matter content, water holding capacity, bulk composition, cation exchange capacity and exchangeable cations). Production rate varied between soils, lay in the range 0–0.043 mmolCaCO3 (0–4.3 mg) earthworm−1 d−1 with an average rate of 8 × 10−3 mmolCaCO3 (0.8 mg) earthworm−1 d−1 and was significantly correlated (r = 0.68, P ≤ 0.01) with soil pH. In a second experiment lasting 315 days earthworms repeatedly (over periods of 39–57 days) produced comparable masses of granules. Converting individual earthworm granule production rates into fluxes expressed on per hectare of land per year basis depends heavily on estimates of earthworm numbers. Using values of 10–20 L. terrestris m−2 suggests a rate of 18– 3139 molCaCO3 ha−1 yr−1. Data obtained from flow-through dissolution experiments suggest that at near neutral pH, granule geometric surface areanormalised dissolution rates are similar to those for other biogenic and inorganic calcium carbonate. Fits of the data to the dissolution relationship r = k(1 − ˝)n where r = dissolution rate, k = a rate constant, ˝ = relative saturation and n = the reaction order gave values of k = 1.72 × 10−10 mol cm−2 s−1 and n = 1.8 for the geometric surface area-normalised rates and k = 3.51 × 10−13 mol cm−2 s−1 and n = 1.8 for the BET surface area-normalised rates. In 196 day leaching column experiments trends in granule dissolution rate referenced to soil chemistry corresponded to predictions made by the SLIM model for dissolution of limestone in soil. If soil solution approaches saturation with respect to calcium carbonate granule dissolution will slow or even stop and granules be preserved indefinitely. Granules have the potential to be a small but significant component of the biogeochemical cycling of C and Ca in soil.
Resumo:
Objective To examine the impact of increasing numbers of metabolic syndrome (MetS) components on postprandial lipaemia. Methods Healthy men (n = 112) underwent a sequential meal postprandial investigation, in which blood samples were taken at regular intervals after a test breakfast (0 min) and lunch (330 min). Lipids and glucose were measured in the fasting sample, with triacylglycerol (TAG), non-esterified fatty acids and glucose analysed in the postprandial samples. Results Subjects were grouped according to the number of MetS components regardless of the combinations of components (0/1, 2, 3 and 4/5). As expected, there was a trend for an increase in body mass index, blood pressure, fasting TAG, glucose and insulin, and a decrease in fasting high-density lipoprotein cholesterol with increasing numbers of MetS components (P≤0.0004). A similar trend was observed for the summary measures of the postprandial TAG and glucose responses. For TAG, the area under the curve (AUC) and maximum concentration (maxC) were significantly greater in men with ≥ 3 than < 3 components (P < 0.001), whereas incremental AUC was greater in those with 3 than 0/1 and 2, and 4/5 compared with 2 components (P < 0.04). For glucose, maxC after the test breakfast (0-330 min) and total AUC (0-480 min) were higher in men with ≥ 3 than < 3 components (P≤0.001). Conclusions Our data analysis has revealed a linear trend between increasing numbers of MetS components and magnitude (AUC) of the postprandial TAG and glucose responses. Furthermore, the two meal challenge discriminated a worsening of postprandial lipaemic control in subjects with ≥ 3 MetS components.
Resumo:
Lifetime reproductive success in female insects is often egg- or time-limited. For instance in pro-ovigenic species, when oviposition sites are abundant, females may quickly become devoid of eggs. Conversely, in the absence of suitable oviposition sites, females may die before laying all of their eggs. In pollinating fig wasps (Hymenoptera: Agaonidae), each species has an obligate mutualism with its host fig tree species [Ficus spp. (Moraceae)]. These pro-ovigenic wasps oviposit in individual ovaries within the inflorescences of monoecious Ficus (syconia, or ‘figs’), which contain many flowers. Each female flower can thus become a seed or be converted into a wasp gall. The mystery is that the wasps never oviposit in all fig ovaries, even when a fig contains enough wasp females with enough eggs to do so. The failure of all wasps to translate all of their eggs into offspring clearly contributes to mutualism persistence, but the underlying causal mechanisms are unclear. We found in an undescribed Brazilian Pegoscapus wasp population that the lifetime reproductive success of lone foundresses was relatively unaffected by constraints on oviposition. The number of offspring produced by lone foundresses experimentally introduced into receptive figs was generally lower than the numbers of eggs carried, despite the fact that the wasps were able to lay all or most of their eggs. Because we excluded any effects of intraspecific competitors and parasitic non-pollinating wasps, our data suggest that some pollinators produce few offspring because some of their eggs or larvae are unviable or are victims of plant defences.
Resumo:
Pollination services are known to provide substantial benefits to human populations and agriculture in particular. Although many species are known to provide pollination services, honeybees (Apis mellifera) are often assumed to provide the majority of these services to agriculture. Using data from a range of secondary sources, this study assesses the importance of insect pollinated crops at regional and national scales and investigates the capacity of honeybees to provide optimal pollination services to UK agriculture. The findings indicate that insect pollinated crops have become increasingly important in UK crop agriculture and, as of 2007, accounted for 20% of UK cropland and 19% of total farmgate crop value. Analysis of honeybee hive numbers indicates that current UK populations are only capable of supplying 34% of pollination service demands even under favourable assumptions, falling from 70% in 1984. In spite of this decline, insect pollinated crop yields have risen by an average of 54% since 1984, casting doubt on long held beliefs that honeybees provide the majority of pollination services. Future land use and crop production patterns may further increase the role of pollination services to UK agriculture, highlighting the importance of measures aimed at maintaining both wild and managed species.
Resumo:
With the increasing frequency and magnitude of warmer days during the summer in the UK, bedding plants which were a traditional part of the urban green landscape are perceived as unsustainable and water-demanding. During recent summers when bans on irrigation have been imposed, use and sales of bedding plants have dropped dramatically having a negative financial impact on the nursery industry. Retaining bedding species as a feature in public and even private spaces in future may be conditional on them being managed in a manner that minimises their water use. Using Petunia x hybrida ‘Hurrah White’ we aimed to discover which irrigation approach was the most efficient for maintaining plants’ ornamental quality (flower numbers, size and longevity), shoot and root growth under water deficit and periods of complete water withdrawal. Plants were grown from plugs for 51 days in wooden rhizotrons (0.35 m (h) x 0.1 m (w) x 0.065 m (d)); the rhizotrons’ front comprised clear Perspex which enabled us to monitor root growth closely. Irrigation treatments were: 1. watering with the amount which constitutes 50% of container capacity by conventional surface drip-irrigation (‘50% TOP’); 2. 50% as sub-irrigation at 10 cm depth (‘50% SUB’); 3. ‘split’ irrigation: 25% as surface drip- and 25% as sub-irrigation at 15 cm depth (‘25/25 SPLIT’); 4. 25% as conventional surface drip-irrigation (‘25% TOP’). Plants were irrigated daily at 18:00 apart from days 34-36 (inclusive) when water was withdrawn for all the treatments. Plants in ‘50% SUB’ had the most flowers and their size was comparable to that of ‘50% TOP’. Differences between treatments in other ‘quality’ parameters (height, shoot number) were biologically small. There was less root growth at deeper soil surface levels for ‘50% TOP’ which indicated that irrigation methods like ‘50% SUB’ and ‘25/25 SPLIT’ and stronger water deficits encouraged deeper root growth. It is suggested that sub-irrigation at 10 cm depth with water amounts of 50% container capacity would result in the most root growth with the maximum flowering for Petunia. Leaf stomatal conductance appeared to be most sensitive to the changes in substrate moisture content in the deepest part of the soil profile, where most roots were situated.
Resumo:
The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.
Resumo:
An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.
Resumo:
We investigate the super-Brownian motion with a single point source in dimensions 2 and 3 as constructed by Fleischmann and Mueller in 2004. Using analytic facts we derive the long time behavior of the mean in dimension 2 and 3 thereby complementing previous work of Fleischmann, Mueller and Vogt. Using spectral theory and martingale arguments we prove a version of the strong law of large numbers for the two dimensional superprocess with a single point source and finite variance.
Resumo:
Background: Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2) have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results: By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC). Conclusion: We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping. Discrimination between intragenic VRN-H1 markers was achieved, indicating that candidate causative polymorphisms may be discerned and prioritised within a larger set of positive associations. This proof of concept study demonstrates the feasibility of association mapping in barley, even within highly structured populations. A major advantage of this method is that it does not require large numbers of genome-wide markers, and is therefore suitable for fine mapping and candidate gene evaluation, especially in species for which large numbers of genetic markers are either unavailable or too costly.
Resumo:
For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods.
Resumo:
The concept of a slowest invariant manifold is investigated for the five-component model of Lorenz under conservative dynamics. It is shown that Lorenz's model is a two-degree-of-freedom canonical Hamiltonian system, consisting of a nonlinear vorticity-triad oscillator coupled to a linear gravity wave oscillator, whose solutions consist of regular and chaotic orbits. When either the Rossby number or the rotational Froude number is small, there is a formal separation of timescales, and one can speak of fast and slow motion. In the same regime, the coupling is weak, and the Kolmogorov–Arnold-Moser theorem is shown to apply. The chaotic orbits are inherently unbalanced and are confined to regions sandwiched between invariant tori consisting of quasi-periodic regular orbits. The regular orbits generally contain free fast motion, but a slowest invariant manifold may be geometrically defined as the set of all slow cores of invariant tori (defined by zero fast action) that are smoothly related to such cores in the uncoupled system. This slowest invariant manifold is not global; in fact, its structure is fractal; but it is of nearly full measure in the limit of weak coupling. It is also nonlinearly stable. As the coupling increases, the slowest invariant manifold shrinks until it disappears altogether. The results clarify previous definitions of a slowest invariant manifold and highlight the ambiguity in the definition of “slowness.” An asymptotic procedure, analogous to standard initialization techniques, is found to yield nonzero free fast motion even when the core solutions contain none. A hierarchy of Hamiltonian balanced models preserving the symmetries in the original low-order model is formulated; these models are compared with classic balanced models, asymptotically initialized solutions of the full system and the slowest invariant manifold defined by the core solutions. The analysis suggests that for sufficiently small Rossby or rotational Froude numbers, a stable slowest invariant manifold can be defined for this system, which has zero free gravity wave activity, but it cannot be defined everywhere. The implications of the results for more complex systems are discussed.