969 resultados para ENDOPLASMIC-RETICULUM STRESS
Resumo:
Ultrastructural analyses revealed the presence of six hemocyte types in the hemolymph of Panstrogylus megistus, partially confirming our previous results obtained through light microscopy. Prohemocytes: small, round hemocytes with a thin cytoplasm layer, espcieally rich in free ribosomes and poor in membranous systems. Plasmatocytes: polymorphic cells, whose cytoplasm contains many lysosomes and a well developed rough endoplasmic reticulum (RER).They are extremely phagocytic. Sometimes, they show a large vacuolation. Granulocytes: granular hemocytes whose granules show different degrees of electrondensity. Most of them, have an internal structuration. Coagulocytes: oval or elongated hemocytes, which show pronounced perinuclear cisternae as normally observed in coagulocytes. The cytoplasm is usually electrondense, poor in membranous systems and contains many labile granules. Oenocytoids: large and very stable hemocytes, whose homogeneous cytoplasme is rich in loose ribosomes and poor in membranous systems. Adipohemocytes: large cells, containing several characteristic lipid droplets. The cytoplasm is also rich in glycogen, RER and large mitochondria. The total and differential hemocyte count (THC and DHC) were also calculated for this reduviid. THC increases from 2,900 hemocytes/cubic millimeter of hemolymph in the 4th intar to 4,350 in the 5th and then, decreases to 1,950 in the adults. Plasmatocytes and coagulocytes are the predominant hemocyte types.
Resumo:
Ovaries up to the 8th day pupae of Dermatobia hominis were studied by transmission electron microscopy. Ovarioles were recognized in ovaries of 4-day old pre-pupae, surrounded by a thin tunica propria of acellular fibrilar material similar in structure to the internal portion of the external tunica of the ovary. There is continuity of the tunica propria and the ovarian tunica, indicating that the former structure originates from the tunica externa. In 5 to 7-day pupae the interstitial somatic cells from the apical region of the ovary, close to the ovarioles, show delicate filamentous material inside of their rough endoplasmic reticulum cisternae; similar material is seem among these cells. Our observations suggest that interstitial somatic cells do not originate the tunica propria but contribute to its final composition.
Resumo:
Dolichol-phosphate-mannose synthase catalyzes the formation of Dolichol-phosphate-mannose from Dolichol-phosphate and GDP-mannose. Analysis of the primary amino acid sequence of the yeast enzyme predicts a luminal orientation of the enzyme in the endoplasmic reticulum. We analysed the translocation of the Dolichol-phosphate-mannose synthase into dog pancreatic microsomal membranes: resistance to proteolytic attack provides evidence of its luminal orientation and asks for a reevaluation of the topology of the reaction.
Resumo:
Throphozoites of Giardia duodenalis group obtained from fragments or scratched of hamster's mucosa were examined by transission electron microscopy. The fine structure of the trophozoites are presented and comapred with those described for other animals. Some of the trophozoites present the cytoplasm full of glycogen, rough endoplasmic reticulum-like structures and homogeneous inclusions not enclosed by membranes, recognized as lipid drops, which had not been observed in Giardia from other animals. The adhesive disk is composed of a layer of microtubules, from which fibrous ribbons extend into the cytoplasm; these ribbons are linked by layer of crossbridge filaments that shows an intermediary dense band, described for the first time in this paper. The authors regard this band as the result of the cross-bridge filaments slinding in the medium region between adjacent fibrous ribbons, and suggest a contractile activity for them. The role of the adhesive disk on the trophozoite mechanism of attachment to host mucosa is also discussed.
Resumo:
The development of dengue viruses type 1 obtained from accute human sera and inoculated into mosquito cell cultures, was observed by standard transmission electron microscopy and cytochemical staining. It follows the trans-type mechanism already estabilished of other dengue types. Directed passage of single virus particles across the cell membrane seems to be a pathway of entry and exit in dengue-1 infected cells. The nature of numerous electron translucent vesicles and tubules, produced simmultaneously during virus replication inside the rough endoplasmic reticulum, was analyzed by cytochemical tests. The largest amount of virus particles was produced inside cell syncytia.
Resumo:
Exogenously added synthetic peptides can mimic endogenously produced antigenic peptides recognized on target cells by MHC class I-restricted cytolytic T lymphocytes. While it is assumed that exogenous peptides associate with class I molecules on the target cell surface, direct binding of peptides to cell-associated class I molecules has been difficult to demonstrate. Using a newly developed binding assay based on photoaffinity labeling, we have investigated the interaction of two antigenic peptides, known to be recognized in the context of H-2Kd or H-2Db, respectively, with 20 distinct class I alleles on living cells. None of the class I alleles tested, with the exception of H-2Kd or H-2Db, bound either of the peptides, thus demonstrating the exquisite specificity of peptide binding to class I molecules. Moreover, peptide binding to cell-associated H-2Kd was drastically reduced when metabolic energy, de novo protein synthesis or protein egress from the endoplasmic reticulum was inhibited. It is thus likely that exogenously added peptides do not associate with the bulk of class I molecules expressed at the cell surface, but rather bind to short-lived molecules devoid of endogenous peptides.
Resumo:
The blood cells of the pulmonate snail Biomphalaria tenagophila, an important transmiter of the trematode Schistosoma mansoni in Brazil, were examined by ligth and transmission electron microscopy (TEM). Two hemocyte types were identified: hyalinocytes and granulocytes. Hyalinocytes are small young (immature), poorly spreading cells, which have a high nucleocytoplasmic ratio and are especially rich in free ribosomes. They do not appear to contain lysosome-like bodies and represent less than 10% of the circulating hemocytes. Granulocytes are larger hemocytes which readily spread on glass surface and which strongly react to the Gomori substrate, indicating the enzyme acid phosphatase usually found in lysosomes. Ultra-structurally, they contain a well-developed rough endoplasmic reticulum, dictyosomes and some some lysosome-like dense bodies. Granulocytes do not exhibit a characteristic granular aspect and the few granules observed in the cytoplasm should correspond to a lysosome system. They were named granulocytes instead of amoebocytes to use the same terminology adopted for Biomphalaria glabrata in order to make easier comparative studies. This is a preface study for more specific investigations on the functional activities of the blood cells of B. tenagophila and their interactions with the trematode parasite.
Resumo:
The Na,K-ATPase is a major ion-motive ATPase of the P-type family responsible for many aspects of cellular homeostasis. To determine the structure of the pathway for cations across the transmembrane portion of the Na,K-ATPase, we mutated 24 residues of the fourth transmembrane segment into cysteine and studied their function and accessibility by exposure to the sulfhydryl reagent 2-aminoethyl-methanethiosulfonate. Accessibility was also examined after treatment with palytoxin, which transforms the Na,K-pump into a cation channel. Of the 24 tested cysteine mutants, seven had no or a much reduced transport function. In particular cysteine mutants of the highly conserved "PEG" motif had a strongly reduced activity. However, most of the non-functional mutants could still be transformed by palytoxin as well as all of the functional mutants. Accessibility, determined as a 2-aminoethyl-methanethiosulfonate-induced reduction of the transport activity or as inhibition of the membrane conductance after palytoxin treatment, was observed for the following positions: Phe(323), Ile(322), Gly(326), Ala(330), Pro(333), Glu(334), and Gly(335). In accordance with a structural model of the Na,K-ATPase obtained by homology modeling with the two published structures of sarcoplasmic and endoplasmic reticulum calcium ATPase (Protein Data Bank codes 1EUL and 1IWO), the results suggest the presence of a cation pathway along the side of the fourth transmembrane segment that faces the space between transmembrane segments 5 and 6. The phenylalanine residue in position 323 has a critical position at the outer mouth of the cation pathway. The residues thought to form the cation binding site II ((333)PEGL) are also part of the accessible wall of the cation pathway opened by palytoxin through the Na,K-pump.
Resumo:
Dengue virus replication in mosquito cell cultures was observed by electron microscopy in one fatal and 40 classical isolates from a dengue type 2 outbreak in Rio de Janeiro and compared with the prototype New Guinea C strain. All the Brazilian isolates presented, beside the classical structured dengue virus particles, fuzzy coated virus-like particles, never observed in thereferencial New Guinea C virus strain. more numerous DEN-2 virus particles, fuzzy coated virus-like particles, defective virus particles and smooth membrane structures inside the rough endoplasmic reticulum characterized the unique fatal isolate examined.
Resumo:
Viral replication, histopathological and ultrastructural changes were observed for a period of nine days in the small intestine of suckling mice infected with a simian rotavirus (SA11). Samples taken from duodenum, jejunun and ileum were prepared for light microscopy, transmission and scanning electron microscopy analysis. Histopathologic effect could be detected within 8 hr post-infection, when only a few altered cells were observed. Damage was extensive after 16 hr post-infection, showing swollen enterocytes and reduced and irregularly oriented microvilli at intestinal villi tips. Virus particles were detected at 16 and 48 hr post-infection, budding from the viroplasm into the rough endoplasmic reticulum cisternae in ileum enterocytes. Clear evidence of viral replication, observed by electron microscopy was not described before in heterologous murine models. Regeneration of the intestinal villi began at the third day post-infection. Despite some differences observed in clinical symptoms and microscopic analysis of homologous and heterologous rotavirus infections, we concluded that mechanisms of heterologous rotavirus infection in mice follow similar patterns to those observed in the homologous models.
Resumo:
Familial hemiplegic migraine type 2, an autosomal dominant form of migraine with aura, has been associated with four distinct mutations in the alpha2-subunit of the Na+,K+-ATPase. We have introduced these mutations in the alpha2-subunit of the human Na+,K+-ATPase and the corresponding mutations in the Bufo marinus alpha1-subunit and studied these mutants by expression in Xenopus oocyte. Metabolic labeling studies showed that the mutants were synthesized and associated with the beta-subunit, except for the alpha2HW887R mutant, which was poorly synthesized, and the alpha1BW890R, which was partially retained in the endoplasmic reticulum. [3H]ouabain binding showed the presence of the alpha2HR689Q and alpha2HM731T at the membrane, whereas the alpha2HL764P and alpha2HW887R could not be detected. Functional studies with the mutants of the B. marinus Na+,K+-ATPase showed a reduced or abolished electrogenic activity and a low K+ affinity for the alpha1BW890R mutant. Through different mechanisms, all these mutations result in a strong decrease of the functional expression of the Na+,K+-pump. The decreased activity in alpha2 isoform of the Na+,K+-pump expressed in astrocytes seems an essential component of hemiplegic migraine pathogenesis and may be responsible for the cortical spreading depression, which is one of the first events in migraine attacks.
Resumo:
We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.
Resumo:
Formation of a membrane-associated replication complex, composed of viral proteins, replicating RNA, altered cellular membranes, and other host factors, is a hallmark of all positive-strand RNA viruses. In the case of HCV, RNA replication takes place in a likely endoplasmic reticulum-derived membrane alteration referred to as the "membranous web." In vitro transcription-translation, membrane extraction and flotation analyses, immunofluorescence microscopy, fluorescent in situ hybridization, and RNA metabolic labeling followed by confocal laser scanning microscopy have yielded insights into the structure and function of the HCV replication complex. We describe these techniques and highlight selected results.
Resumo:
Intestine samples of Bufo sp. tadpoles with parasitism confirmed for Giardia agilis were studied by transmission electron microscopy. The G. agilis trophozoites were long and thin. The plasma membrane was sometimes undulated and the cytoplasm, adjacent to the dorsal and ventral regions, showed numerous vacuoles. The two nuclei presented prominent nucleoli. The cytoplasm was electron-dense with free ribosomes, glycogen and rough endoplasmic reticulum-like structures. Polyhedral inclusions were observed in the cytoplasm and outside the protozoan; some of these inclusions exhibited membrane disruption. The flagella ultrastructure is typical, with the caudal pair accompanied by the funis. Next to the anterior pair, osmiophilic material was noticed. The ventro-lateral flange was short and thick, supported by the marginal plates that penetrated into its distal extremity; only its distal portion had adjacent osmiophilic filament. The G. agilis trophozoites showed the general subcellular feature of the genus. However, the ventro-lateral flange ultrastructure was an intermediate type between G. muris and G. duodenalis.
Resumo:
To demonstrate the potential of McCoy cells for the isolation of rabies virus from the cerebrospinal (CSF) fluid of a patient with a diagnosis of rabies, McCoy cells were inoculated with CSF from a patient with a clinical diagnosis of rabies and investigated in terms of morphometric aspect using the JAVA analysis system for the quantification of the increased size of infected cells compared to noninfected cells. The cells were also examined in terms of specific staining for the diagnosis of rabies by the method of Sellers for the observation of intracytoplasmic inclusions and by specific immunofluorescence staining for rabies virus. Infected cells showed changes in cell permeability and morphologic modifications which differed significantly compared to normal cells (P<0.001) when analyzed by the Mann-Whitney and Kruskal-Wallis tests. Intense activity of the endoplasmic reticulum was also observed, as indicated by the presence of intracytoplasmic inclusions visualized by specific staining. The present study demonstrated the isolation of rabies virus from the CSF of a patient with rabies, showing that McCoy cells can be used for the laboratory diagnosis of patients suspected to have rabies.