997 resultados para ELEVATED ATMOSPHERIC CO2


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atmospheric CO2 concentration is expected to continue rising in the coming decades, but natural or artificial processes may eventually reduce it. We show that, in the FAMOUS atmosphere-ocean general circulation model, the reduction of ocean heat content as radiative forcing decreases is greater than would be expected from a linear model simulation of the response to the applied forcings. We relate this effect to the behavior of the Atlantic meridional overturning circulation (AMOC): the ocean cools more efficiently with a strong AMOC. The AMOC weakens as CO2 rises, then strengthens as CO2 declines, but temporarily overshoots its original strength. This nonlinearity comes mainly from the accumulated advection of salt into the North Atlantic, which gives the system a longer memory. This implies that changes observed in response to different CO2 scenarios or from different initial states, such as from past changes, may not be a reliable basis for making projections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO2 increasing at 1% yr−1) during the second doubling of CO2 is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO2 radiative forcing may rise more rapidly than logarithmically with CO2 concentration. Third, the climate feedback parameter may decline as the CO2 concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO2 in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic carbon emissions are likely to continue in the future. To study changes of the carbon cycle and climate on timescales of a few hundred to a few thousand years, we have included a simple carbon cycle model into the iLOVECLIM Earth System Model. In this study, we describe the ocean and terrestrial biosphere carbon cycle models and their performance relative to observational data. We focus on the main carbon cycle variables including the carbon isotope ratios δ13C and the Δ14C. We show that the model results are in good agreement with modern observations both at the surface and in the deep ocean for the main variables, in particular phosphates, dissolved inorganic carbon and the carbon isotopes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of the Tibetan Plateau uplift on the Asian monsoons and inland arid climates is an important but also controversial question in studies of paleoenvironmental change during the Cenozoic. In order to achieve a good understanding of the background for the formation of the Asian monsoons and arid environments, it is necessary to know the characteristics of the distribution of monsoon regions and arid zones in Asia before the plateau uplift. In this study, we discuss in detail the patterns of distribution of the Asian monsoon and arid regions before the plateau uplift on the basis of modeling results without topography from a global coupled atmosphere–ocean general circulation model, compare our results with previous simulation studies and available biogeological data, and review the uncertainties in the current knowledge. Based on what we know at the moment, tropical monsoon climates existed south of 20°N in South and Southeast Asia before the plateau uplift, while the East Asian monsoon was entirely absent in the extratropics. These tropical monsoons mainly resulted from the seasonal shifts of the Inter-Tropical Convergence Zone. There may have been a quasi-monsoon region in central-southern Siberia. Most of the arid regions in the Asian continent were limited to the latitudes of 20–40°N, corresponding to the range of the subtropical high pressure year-around. In the meantime, the present-day arid regions located in the relatively high latitudes in Central Asia were most likely absent before the plateau uplift. The main results from the above modeling analyses are qualitatively consistent with the available biogeological data. These results highlight the importance of the uplift of the Tibetan Plateau in the Cenozoic evolution of the Asian climate pattern of dry–wet conditions. Future studies should be focused on effects of the changes in land–sea distribution and atmospheric CO2 concentrations before and after the plateau uplift, and also on cross-comparisons between numerical simulations and geological evidence, so that a comprehensive understanding of the evolution of the Cenozoic paleoenvironments in Asia can be achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ∼∼ 150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ∼∼ 0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m−2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr−1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi:10.​1029/​2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418–2427, 2010. doi:10.​1175/​2009JCLI3466.​1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the effects of lung inflation/deflation with and without CO2 on the entire population of pulmonary receptors in the vagus nerve in two species of snakes and two species of turtles. We asked the question, how does the response of the entire mixed population of pulmonary stretch receptors (PSR) and intrapulmonary chemoreceptors (IPC) in species possessing both differ from that in species with only PSR? This was studied under conditions of artificial ventilation with the secondary goal of extending observations on the presence/absence of IPC to a further three species. Our results indirectly illustrate the presence of IPC in the Burmese python and South American rattlesnake but not the side necked turtle, adding support to the hypothesis that IPC first arose in diapsid reptiles. In both species of snake, CO2-sensitive discharge (presumably from IPC) predominated almost to the exclusion of CO2-insensitive discharge (presumably arising from PSR) while the opposite was true for both species of turtle. The data suggest that for animals breathing air under conditions of normal metabolism there is little to distinguish between the discharge profiles of the total population of receptors arising from the lungs in the different groups. Interestingly, however, under conditions of elevated environmental CO2 most volume-related feedback from the lungs is abolished in the two species of snakes, while under conditions of elevated metabolic CO2, it is estimated that volume feedback from the lungs would be enhanced in these same species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stable oxygen and carbon isotopic composition of caliche in fluvial and supratidal rocks of the Abo Formation (Permian), south-central New Mexico, is controlled by palecoclimate and depositional environment. Fluvial caliche consists of low-Mg calcite nodules and vertically oriented tubules that display stage II texture. Micrite matrix support, brecciation, ooids/pisoliths, aveolar-septal texture, and peloids are common in the fluvial caliche and, along with red color and slickensides in the host shale, indicate pedogenesis in a well-oxidized vadose zone. In contrast, periodic waterlogging of the supratidal paleosols, probably due to high water table, is indicated by drab colors, carbonaceous flecks, horizontal rhizoliths, and the paucity of vadose textures in the stage II caliche nodules.Stable oxygen isotopes are similar in the fluvial and supratidal caliches and range from 21.6 to 30.5 parts per thousand (SMOW). The data exhibit a crude bimodality and delta-O-18 enrichment with a decrease in age (higher in the section). Consideration of these data in the context of delta-temperature relations suggests that 1) surface waters responsible for caliche formation increased in delta-O-18 (from roughly -8 to + 1 parts per thousand) over the 18 m.y. time interval that separated the lowest stratigraphic nodule horizon from the highest, 2) the increasing delta-O-18 values also reflect a warming trend (approximately 15-degrees to nearly 30-degrees-C) in the mean monthly temperature over this same time period, with perhaps an associated increase in Permian ocean temperatures, and 3) the significant variation in delta-O-18 from oldest to youngest caliche was probably enhanced by the amount effect, such that as the temperature increased, the amount of precipitation decreased, resulting in high delta-O-18 values.Caliches in the Abo are enriched in heavy carbon (-7.2 to -1.5 part per thousand PDB) compared to that of soil carbonate derived exclusively from C3 plants (-12 part per thousand PDB), and the supratidal caliches contain somewhat heavier carbon compared to the fluvial caliche. The delta-C-13 values for both environments increase with a decrease in caliche age. These results indicate that as the temperature increased and rainfall decreased with time, the level of C3 plant productivity apparently declined, allowing a greater influx of atmospheric CO2 into the soil. This can only occur when soil respiration rates are quite low or at very shallow depths (less than 10 cm), or both. Atmospheric CO2 seems to have invaded the supratidal soils to a somewhat greater extent than the fluvial soils.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (Ca) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to Ca for J. thurifera and to higher Ca and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of Ca even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Well-maintained lawns are comfortable and safe places for leisure activities and sports practice, and they also bring environmental benefits; for example, they reduce soil exposure to erosion and releases atmospheric CO2, thus reducing the greenhouse effect. However, regardless of the purpose of use or the choice of the plant species to form the lawn, the highest costs involve cutting that is needed to keep the turfgrass at its appropriate height. Successive lawn cutting operations are necessary basically because of the vegetative and reproductive growth of turfgrass which, in Brazil, occurs mainly from October to March. Expenditures with successive mechanical cuttings have fostered the search of alternative procedures to keep lawn plants at appropriate height, such as the use of plant growth inhibitors, an increasingly interesting procedure. Since the use of this technology in Brazil is still at its early stage, the aim of this literature review is to examine aspects associated with lawn management by using growth inhibitors. Another alternative is to increase the knowledge of the classification and rational application of the different compounds currently available in the market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar a dinâmica do carbono em uma região da Amazônia Oriental, cujo uso da terra predominante é a agricultura familiar; a unidade espacial adotada neste estudo foram três pequenas bacias de drenagem. A dinâmica do carbono foi avaliada a partir de medidas hidrológicas e biogeoquímicas em águas dos igarapés Cumaru, Pachibá e São João entre junho de 2006 a maio de 2007. O ambiente aquático e a hidrogeoquímica fluvial foram caracterizados a partir de medidas in situ da condutividade elétrica, temperatura, pH e concentração de oxigênio dissolvido. Amostras de água foram coletadas e analisadas para determinação do carbono orgânico dissolvido (COD) e pressão parcial do dióxido de carbono (pCO 2 ). A partir dos valores de pCO 2 , foram calculadas as concentrações de carbono inorgânico dissolvido (CID). Já os fluxos de C02 foram medidos in situ e também calculados a partir do pC0 2 . Utilizando-se medidas de vazão instantânea a cada campanha mensal de campo, calcularam-se fluxos anuais de COD. A caracterização dos solos e do uso da terra nas porções estudadas das bacias, assim como os índices pluviométricos e fluviométricos, foram considerados na interpretação dos resultados. Podem-se enumerar como principais resultados o seguinte: 1) As características físico-químicas das águas fluviais das bacias estudadas retrataram seus solos ácidos, a vegetação ripária, e processos hidrológicos biogeoquímicos no ambiente aquático e terrestre, e com certa variabilidade sazonal; 2)0 pH e o oxigênio dissolvido se correlacionaram positivamente com o carbono dissolvido na coluna d'água; 3) O transporte de COD por unidade de área foi elevado quando comparado com outras bacias amazônicas, e mais intenso em períodos chuvosos; 4) O transporte de COD e a evasão de C0 2 pareceram responder positivamente à presença de vegetação secundária e floresta densa, e negativamente às atividades agropecuárias; e 5) As taxas de evasão de C0 2 foram elevadas comparando-as a outros rios amazônicos, e corroboram a hipótese de que pequenas bacias são importante fontes de C0 2 para atmosfera na região.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Amazon River floodplain is an important source of atmospheric CO2 and CH4. Aquatic herbaceous vegetation (macrophytes) have been shown to contribute significantly to floodplain net primary productivity (NPP) and methane emission in the region. Their fast growth rates under both flooded and dry conditions make herbaceous vegetation the most variable element in the Amazon floodplain NPP budget, and the most susceptible to environmental changes. The present study combines multitemporal Radarsat-1 and MODIS images to monitor spatial and temporal changes in herbaceous vegetation cover in the Amazon floodplain. Radarsat-1 images were acquired from Dec/2003 to Oct/2005, and MODIS daily surface reflectance products were acquired for the two cloud-free dates closest to each Radarsat-1 acquisition. An object-based, hierarchical algorithm was developed using the temporal SAR information to discriminate Permanent Open Water (OW), Floodplain (FP) and Upland (UL) classes at Level 1, and then subdivide the FP class into Woody Vegetation (WV) and Possible Macrophytes (PM) at Level 2. At Level 3, optical and SAR information were combined to discriminate actual herbaceous cover at each date. The resulting maps had accuracies ranging from 80% to 90% for Level 1 and 2 classifications, and from 60% to 70% for Level 3 classifications, with kappa values ranging between 0.7 and 0.9 for Levels 1 and 2 and between 0.5 and 0.6 for Level 3. All study sites had noticeable variations in the extent of herbaceous cover throughout the hydrological year, with maximum areas up to four times larger than minimum areas. The proposed classification method was able to capture the spatial pattern of macrophyte growth and development in the studied area, and the multitemporal information was essential for both separating vegetation cover types and assessing monthly variation in herbaceous cover extent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.