317 resultados para EGF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Despite significant progress in understanding the molecular pathology of pancreatic cancer and its precursor lesion: pancreatic intraepithelial neoplasia (PanIN), there remain no molecules with proven clinical utility as prognostic or therapeutic markers. Here, we used oligonucleotide microarrays to interrogate mRNA expression of pancreatic cancer tissue and normal pancreas to identify novel molecular pathways dysregulated in the development and progression of pancreatic cancer. Experimental Design: RNA was hybridized to Affymetrix Genechip HG-U133 oligonucleotide microarrays. A relational database integrating data from publicly available resources was created to identify candidate genes potentially relevant to pancreatic cancer. The protein expression of one candidate, homeobox B2 (HOXB2), in PanIN and pancreatic cancer was assessed using immunohistochemistry. Results: We identified aberrant expression of several components of the retinoic acid (RA) signaling pathway (RARa, MUC4, Id-1, MMP9, uPAR, HB-EGF, HOXB6, and HOXB2), many of which are known to be aberrantly expressed in pancreatic cancer and Pan IN. HOXB2, a downstream target of RA, was up-regulated 6.7-fold in pancreatic cancer compared with normal pancreas. Immunohistochemistry revealed ectopic expression of HOXB2 in 15% of early Pan IN lesions and 48 of 128 (38%) pancreatic cancer specimens. Expression of HOXB2 was associated with nonresectable tumors and was an independent predictor of poor survival in resected tumors. Conclusions: We identified aberrant expression of RA signaling components in pancreatic cancer, including HOXB2, which was expressed in a proportion of PanIN lesions. Ectopic expression of HOXB2 was associated with a poor prognosis for all patients with pancreatic cancer and was an independent predictor of survival in patients who underwent resection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For most of the past century, the prospect of replacing lost or damaged cells in the central nervous system (CNS) was hampered by the opinion that the adult mammalian CNS was incapable of generating new nerve cells. This belief, Like most dogmas, was essentially founded on a lack of experimental evidence to the contrary. The overturning of this 'no new neuron' hypothesis began midway through the twentieth century with a series of reports documenting neurogenesis in the postnatal and adult brain(1), continued with the isolation and in vitro culture of neurogenic cells from the adult mammalian brain(2,3), and culminated in the discovery of a population of muttipotent, selfrenewing cells in the adult CNS (that is, bona fide neural stem cells)(3-5). Although a variety of techniques were initially used, the neurosphere assay (NSA)(3,6) rapidly emerged as the assay of choice and has since become a valuable toot for isolating, and understanding the biology of, embryonic and adult CNS stem cells. Like all technologies, it is not without its limitations. In this article we will hightight several shortcomings of the assay related to its application and interpretation that we believe have led to a significant body of research whose conclusions may well be misleading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this investigation was to characterize the proliferative precursor cells in the adult mouse hippocampal region. Given that a very large number of new hippocampal cells are generated over the lifetime of an animal, it is predicted that a neural stem cell is ultimately responsible for maintaining this genesis. Although it is generally accepted that a proliferative precursor resides within the hippocampus, contradictory reports exist regarding the classification of this cell. Is it a true stem cell or a more limited progenitor? Using a strict functional definition of a neural stem cell and a number of in vitro assays, we report that the resident hippocampal precursor is a progenitor capable of proliferation and multipotential differentiation but is unable to self-renew and thus proliferate indefinitely. Furthermore, the mitogen FGF-2 stimulates proliferation of these cells to a greater extent than epidermal growth factor ( EGF). In addition, we found that BDNF was essential for the production of neurons from the hippocampal progenitor cells, being required during proliferation to trigger neuronal fate. In contrast, a bona fide neural stem cell was identified in the lateral wall of the lateral ventricle surrounding the hippocampus. Interestingly, EGF proved to be the stronger mitogenic factor for this cell, which was clearly a different precursor from the resident hippocampal progenitor. These results suggest that the stem cell ultimately responsible for adult hippocampal neurogenesis resides outside the hippocampus, producing progenitor cells that migrate into the neurogenic zones and proliferate to produce new neurons and glia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the you-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian, gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report that phosphoinositol-binding sorting nexin 5 ( SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metamorphosis is both an ecological and a developmental genetic transition that an organism undergoes as a normal part of ontogeny. Many organisms have the ability to delay metamorphosis when conditions are unsuitable. This strategy carries obvious benefits, but may also result in severe consequences for older larvae that run low on energy. In the marine environment, some lecithotrophic larvae that have prolonged periods in the plankton may begin forming postlarval and juvenile structures that normally do not appear until after settlement and the initiation of metamorphosis. This precocious activation of the postlarval developmental program may reflect an adaptation to increase the survival of older, energy-depleted larvae by allowing them to metamorphose more quickly. In the present study, we investigate morphological and genetic consequences of delay of metamorphosis in larvae of Herdmania momus (a solitary stolidobranch ascidian). We observe significant morphological and genetic changes during prolonged larval life, with older larvae displaying significant changes in RNA levels, precocious migration of mesenchyme cells, and changes in larval shape including shortening of the tail. While these observations suggest that the older H. momus larvae are functionally different from younger larvae and possibly becoming more predisposed to undergo metamorphosis, we did not find any significant differences in gene expression levels between postlarvae arising from larvae that metamorphosed as soon as they were competent and postlarvae developing from larvae that postponed metamorphosis. This recalibration, or convergence, of transcript levels in the early postlarva suggests that changes that occur during prolonged larval life of H. momus are not necessarily associated with early activation of adult organ differentiation. Instead, it suggests that an autonomous developmental program is activated in H. momus upon the induction of metamorphosis regardless of the history of the larva.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) is considered to be the major receptor for tumour promoting phorbol esters such as 12-0- tetradecanoylphorbol-13-acetate (TPA). These agents evoke a plethora of biological effects on cells in culture. The growth of A549 human lung carcinoma cells maintained in medium fortified with 10% foetal calf serum (FCS) is arrested for 6 days by TPA and other biologically active phorbol esters. In the work described in this thesis, the hypothesis was tested that modulation of PKC activity is closely related to events pivotal for cytostasis to occur. The effect of several phorbol esters, of newly synthesized analogues of diacylglycerols (DAG) and of bryostatins (bryos) on cell growth and ability to modulate activity of PKC has been investigated.Determination of the subcellular distribution of PKC following treatment of cells with TPA and partial enzyme purification by non-denaturing poly-acrylamide gel electrophoresis revealed translocation of enzyme activity from cytosoUc to paniculate fraction. Chronic exposure of cells to TPA resulted in a time and concentration dependent degradation of enzyme activity. Synthetic DAG and DAG analogues, unable to arrest the growth of cells at non-toxic concentrations, were neither able to affect subcellular PKC distribution nor compete effectively for phorbol ester binding sites at physiologically relevant concentrations. Bryos 1,2,4 and 5, natural products, possessing antineoplastic activity in mice, elicited transient arrest of A549 cell growth in vitro. They successfully competed for phorbol ester receptors in A549 cells with exquisite affinity and induced a shift in sub-cellular PKC distribution, though not to the same extent as PTA. Enzyme down-regulation resulted from prolonged exposure of cells to nanomolar concentrations of bryos. In vivo studies demonstrated that neither PDBu nor bryo 1 was able to inhibit A549 xenograft growth in athymic mice. The growth of A549 cell populations cultured under conditions of serum-deprivation was inhibited only transiently by biologically active phorbol esters. Fortification of serum-free medium with EGF or fetuin was able to partially restore sensitivity to maintained growth arrest by PTA. PKC translocation to the paniculate cellular fraction and subsequent enzyme down-regulation, induced by TPA, occurred in a manner similar to that observed in serum-supplemented cells. However, total PKC activity and cytosolic phorbol ester binding potential were greatly reduced in the serum-deprived cell population. Western blot analysis using monospecific monoclonal antibodies revealed the presence of PKC-a in both A549 cell populations, with significantly reduced protein levels in serum- deprived cells. PKC-/9 was not detected in either cell population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall aim of this study was to further understanding of themechanisms by which inhibitors of secretory activity mediate their action inisolated stomach cells. One objective was to determine whether a G-proteinsensitive to inactivation by pertussis toxin was involved in the action of thefollowing inhibitors of histamine-stimulated acid secretion: prostaglandin E2(PGE2), somatostatin, epidermal growth factor (EGF) and 12-0-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C.The site and mechanism by which EGF inhibited acid secretion and itseffects on pepsinogen secretion were also of interest. Further objectiveswere to determine whether TPA could induce down-regulation of proteinkinase C in parietal cells and to examine the inhibitory action of cyclic GMPon acid secretion. Acid secretion was estimated by the accumulation of theweak base aminopyrine in parietal cells. Experiments in which cells were preincubated with pertussis toxinindicated that PGE2, somatostatin and EGF mediated their inhibitory actionagainst histamine-stimulation via an inhibitory G-protein of the "Gi·like"family. Stimulation of PGE2 production by EGF also involved a pertussistoxin-sensitive G-protein. EGF inhibited acid secretion stimulated byforskolin, but only in the absence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This action of EGF was sensitive toinactivation by pertussis toxin. It is suggested that the effect of EGF was dueto an increase in low Km cyclic AMP phosphodiesterase activity, rather thanan effect on the histamine (H2) receptor. EGF did not inhibit pepsinogensecretion. TPA exerted only a small part of its inhibitory action by a mechanismsensitive to pertussis toxin. TPA was unable to induce detectable down-regulationof protein kinase C. Acid secretion stimulated by near-maximallyeffective concentrations of h1stamme plus IBMX, dibutyryl cyclic AMP(dbcAMP) and K+ was inhibited by dibutyryl cyclic GMP (dbcGMP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by ß-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 μM) or PD184352 (2 μM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability. © FASEB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Receptor mediated endocytosis effectively removes the "ears" with which a cell would "hear" a signal conveyed by extracellular signaling molecules, but does not necessarily block the signaling pathway in which the endocytosed receptor participates. In the process of signal attenuation, this newly formed vesicle is fused with a phagosome and the receptor molecules are degraded. Receptor mediated endocytosis as a way to attenuate epidermal growth factor (EGF) and insulin signaling will be the focus here. Ras Interference 1 (Rin 1) is a multifunctional protein involved in intracellular membrane trafficking and receptor mediated endocytosis through its Rab5 Guanine Exchange Factor and SH2 domains. The goal of this investigation is to determine the role of key amino acids involved in the interaction of Rinl with Epidermal Growth Factor Receptor and Rab5. To elucidate this role, a number of point mutations have been created and the effects of each mutation on Rin 1 function will be investigated. Key amino acids in the SH2 and Vps9 Domain were identified and effects of mutations on rate of endocytosis were observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rab family of proteins are low molecular weight GTPases that have the ability to switch between GTP- (active) and GDP- (inactive) bound form, and in that sense act as molecular switches. Through distinct localization on various vesicles and organelles and by cycling through GTP/GDP bound forms, Rabs are able to recruit and activate numerous effector proteins, both spatially and temporally, and hence behave as key regulators of trafficking in both endocytic and biosynhtetic pathways. The Rab5 protein has been shown to regulate transport from plasma membrane to the early endosome as well as activate signaling pathways from the early endosome. This dissertation focused on understanding Rab5 activation via endocytosis of receptor tyrosine kinases (RTKs). First, tyrosine kinase activity of RTKs was linked to endosome fusion by demonstrating that tyrosine kinase inhibitors block endosome fusion and activation of Rab5, and a constitutively active form of Rab5 is able to rescue endosome fusion. However, depending on how much ligand is available at the cell surface, the receptor-ligand complexes can be internalized via a number of distinct pathways. Similarly, Rab5 was activated in a ligand-dependent concentration dependent manner via clathrin- and caveolin-mediated pathways, as well as a pathway independent of both. However, overexpression Rabex-5, a nucleotide exchange factor for Rab5, is able to rescue activation even when all of the pathways of EGF-receptor internalization were blocked. Next, the three naturally occurring splice variants of Rabex-5 selectively activated Rab5. Lastly, Rabex-5 inhibits differentiation of 3T3-L1 and PC12 cells through 1) degradation of signaling endosome via Rab5-dependent fusion with the early endosome, 2) and inhibition of signaling cascade via ubiquitination of Ras through the ZnF domain at the N-terminus of Rabex-5. In conclusion, these data shed light on complexity of the endosomal trafficking system where tyrosine kinase activity of the receptor is able to affect endosome fusion; how different endocytic pathways affect activation of one of the key regulators of early endocytic events; and how selective activation of Rab5 via Rabex-5 can control adipogenesis and neurogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cleft palate presented by transforming growth factor-β3 (Tgf-β3 ) null mutant mice is caused by altered palatal shelf adhesion, cell proliferation, epithelial-to-mesenchymal transformation and cell death. The expression of epidermal growth factor (EGF), transforming growth factor-β1 ( Tgf-β1 ) and muscle segment homeobox-1 (Msx-1) is modified in the palates of these knockout mice, and the cell proliferation defect is caused by the change in EGF expression. In this study, we aimed to determine whether this change in EGF expression has any effect on the other mechanisms altered in Tgf-β 3 knockout mouse palates. We tested the effect of inhibiting EGF activity in vitro in the knockout palates via the addition of Tyrphostin AG 1478. We also investigated possible interactions between EGF, Tgf-β 1 and Msx-1 in Tgf-β 3 null mouse palate cultures. The results show that the inhibition of EGF activity in Tgf-β 3 null mouse palate cultures improves palatal shelf adhesion and fusion, with a particular effect on cell death, and restores the normal distribution pattern of Msx-1 in the palatal esenchyme. Inhibition of TGF-β 1 does not affect either EGF or Msx-1 expression.