934 resultados para Drugs, Antimalarial.
Resumo:
Selective polypharmacology, where a drug acts on multiple rather than single molecular targets involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of integral membrane signalling proteins coupled to the G protein and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT2A and 5-HT6), dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT2C) receptors lead to metabolic side effects and the 5-HT2B serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable to separate the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective towards the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationships studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.
Resumo:
Background: Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are commonly prescribed to the growing number of cancer patients (more than two million in the UK alone) often to treat hypertension. However, increased fatal cancer in ARB users in a randomized trial and increased breast cancer recurrence rates in ACEI users in a recent observational study have raised concerns about their safety in cancer patients. We investigated whether ACEI or ARB use after breast, colorectal or prostate cancer diagnosis was associated with increased risk of cancer-specific mortality.
Methods: Population-based cohorts of 9,814 breast, 4,762 colorectal and 6,339 prostate cancer patients newly diagnosed from 1998 to 2006 were identified in the UK Clinical Practice Research Datalink and confirmed by cancer registry linkage. Cancer-specific and all-cause mortality were identified from Office of National Statistics mortality data in 2011 (allowing up to 13 years of follow-up). A nested case–control analysis was conducted to compare ACEI/ARB use (from general practitioner prescription records) in cancer patients dying from cancer with up to five controls (not dying from cancer). Conditional logistic regression estimated the risk of cancer-specific, and all-cause, death in ACEI/ARB users compared with non-users.
Results: The main analysis included 1,435 breast, 1,511 colorectal and 1,184 prostate cancer-specific deaths (and 7,106 breast, 7,291 colorectal and 5,849 prostate cancer controls). There was no increase in cancer-specific mortality in patients using ARBs after diagnosis of breast (adjusted odds ratio (OR) = 1.06 95% confidence interval (CI) 0.84, 1.35), colorectal (adjusted OR = 0.82 95% CI 0.64, 1.07) or prostate cancer (adjusted OR = 0.79 95% CI 0.61, 1.03). There was also no evidence of increases in cancer-specific mortality with ACEI use for breast (adjusted OR = 1.06 95% CI 0.89, 1.27), colorectal (adjusted OR = 0.78 95% CI 0.66, 0.92) or prostate cancer (adjusted OR = 0.78 95% CI 0.66, 0.92).
Conclusions: Overall, we found no evidence of increased risks of cancer-specific mortality in breast, colorectal or prostate cancer patients who used ACEI or ARBs after diagnosis. These results provide some reassurance that these medications are safe in patients diagnosed with these cancers.
Keywords: Colorectal cancer; Breast cancer; Prostate cancer; Mortality; Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers
Resumo:
Cough remains a serious unmet clinical problem, both as a symptom of a range of other conditions such as asthma, chronic obstructive pulmonary disease, gastroesophageal reflux, and as a problem in its own right in patients with chronic cough of unknown origin. This article reviews our current understanding of the pathogenesis of cough and the hypertussive state characterizing a number of diseases as well as reviewing the evidence for the different classes of antitussive drug currently in clinical use. For completeness, the review also discusses a number of major drug classes often clinically used to treat cough but that are not generally classified as antitussive drugs. We also reviewed a number of drug classes in various stages of development as antitussive drugs. Perhaps surprising for drugs used to treat such a common symptom, there is a paucity of well-controlled clinical studies documenting evidence for the use of many of the drug classes in use today, particularly those available over the counter. Nonetheless, there has been a considerable increase in our understanding of the cough reflex over the last decade that has led to a number of promising new targets for antitussive drugs being identified and thus giving some hope of new drugs being available in the not too distant future for the treatment of this often debilitating symptom.
Resumo:
Microneedles (MNs) are a minimally invasive drug delivery platform, designed to enhance transdermal drug delivery by breaching the stratum corneum. For the first time, this study describes the simultaneous delivery of a combination of three drugs using a dissolving polymeric MN system. In the present study, aspirin, lisinopril dihydrate, and atorvastatin calcium trihydrate were used as exemplar cardiovascular drugs and formulated into MN arrays using two biocompatible polymers, poly(vinylpyrrollidone) and poly(methylvinylether/maleic acid). Following fabrication, dissolution, mechanical testing, and determination of drug recovery from the MN arrays, in vitro drug delivery studies were undertaken, followed by HPLC analysis. All three drugs were successfully delivered in vitro across neonatal porcine skin, with similar permeation profiles achieved from both polymer formulations. An average of 126.3 ± 18.1 μg of atorvastatin calcium trihydrate was delivered, notably lower than the 687.9 ± 101.3 μg of lisinopril and 3924 ± 1011 μg of aspirin, because of the hydrophobic nature of the atorvastatin molecule and hence poor dissolution from the array. Polymer deposition into the skin may be an issue with repeat application of such a MN array, hence future work will consider more appropriate MN systems for continuous use, alongside tailoring delivery to less hydrophilic compounds.
Resumo:
We describe formulation and evaluation of novel dissolving polymeric microneedle (MN) arrays for the facilitated delivery of low molecular weight, high dose drugs. Ibuprofen sodium was used as the model here and was successfully formulated at approximately 50% w/w in the dry state using the copolymer poly(methylvinylether/maleic acid). These MNs were robust and effectively penetrated skin in vitro, dissolving rapidly to deliver the incorporated drug. The delivery of 1.5mg ibuprofen sodium, the theoretical mass of ibuprofen sodium contained within the dry MN alone, was vastly exceeded, indicating extensive delivery of the drug loaded into the baseplates. Indeed in in vitro transdermal delivery studies, approximately 33mg (90%) of the drug initially loaded into the arrays was delivered over 24h. Iontophoresis produced no meaningful increase in delivery. Biocompatibility studies and in vivo rat skin tolerance experiments raised no concerns. The blood plasma ibuprofen sodium concentrations achieved in rats (263μgml(-1) at the 24h time point) were approximately 20 times greater than the human therapeutic plasma level. By simplistic extrapolation of average weights from rats to humans, a MN patch design of no greater than 10cm(2) could cautiously be estimated to deliver therapeutically-relevant concentrations of ibuprofen sodium in humans. This work, therefore, represents a significant progression in exploitation of MN for successful transdermal delivery of a much wider range of drugs.