905 resultados para Dried apricot
Resumo:
Background In Pacific Island Countries (PICs) the epidemiology of dengue is characterized by long-term transmission of a single dengue virus (DENV) serotype. The emergence of a new serotype in one island country often indicates major outbreaks with this serotype will follow in other PICs. Objectives Filter paper (FP) cards on which whole blood or serum from dengue suspected patients had been dried was evaluated as a method for transportation of this material by standard mail delivery throughout the Pacific. Study design Twenty-two FP-dried whole blood samples collected from patients in New Caledonia and Wallis & Futuna Islands, during DENV-1 and DENV-4 transmission, and 76 FP-dried sera collected from patients in Yap State, Majuro (Republic of Marshall Islands), Tonga and Fiji, before and during outbreaks of DENV-2 in Yap State and DENV-4 in Majuro, were tested for the presence of DENV RNA, by serotype specific RT-PCR, at the Institut Louis Malardé in French Polynesia. Results The serotype of DENV could be determined, by a variety of RT-PCR procedures, in the FP-dried samples after more than three weeks of transport at ambient temperatures. In most cases, the sequencing of the envelope gene to genotype the viruses also was possible. Conclusions The serotype and genotype of DENV can be determined from FP-dried serum or whole blood samples transported over thousands of kilometers at ambient, tropical, temperatures. This simple and low-cost approach to virus identification should be evaluated in isolated and resource poor settings for surveillance for a range of significant viral diseases.
Resumo:
Major imperfections in crosslinked polymers include loose or dangling chain ends that lower the crosslink d., thereby reducing elastic recovery and increasing the solvent swelling. These imperfections are hard to detect, quantify and control when the network is initiated by free radical reactions. As an alternative approach, the sol-gel synthesis of a model poly(ethylene glycol) (PEG-2000) network is described using controlled amts. of bis- and mono-triethoxy silyl Pr urethane PEG precursors to give silsesquioxane (SSQ, R-SiO1.5) structures as crosslink junctions with a controlled no. of dangling chains. The effect of the no. of dangling chains on the structure and connectivity of the dried SSQ networks has been detd. by step-crystn. differential scanning calorimetry. The role that micelle formation plays in controlling the sol-gel PEG network connectivity has been studied by dynamic light scattering of the bis- and mono-triethoxy silyl precursors and the networks have been characterized by 29Si solid state NMR, sol fraction and swelling measurements. These show that the dangling chains will increase the mesh size and water uptake. Compared to other end-linked PEG hydrogels, the SSQ-crosslinked networks show a low sol fraction and high connectivity, which reduces solvent swelling, degree of crystallinity and the crystal transition temp. The increased degree of freedom in segment movement on the addn. of dangling chains in the SSQ-crosslinked network facilitates the packing process in crystn. of the dry network and, in the hydrogel, helps to accommodate more water mols. before reaching equil.
Resumo:
Microscopic changes occur in plant food materials during drying significantly influence the macroscopic properties and quality factors of the dried food materials. It is very critical to study microstructure to understand the underlying cellular mechanisms to improve performance of the food drying techniques. However, there is very limited research conducted on such microstructural changes of plant food material during drying. In this work, Gala apple parenchyma tissue samples were studied using a scanning electron microscope for gradual microstructural changes as affected by temperature, time and moisture content during hot air drying at two drying temperatures: 57 ℃ and 70 ℃. For fresh samples, the average cellular parameter values were; cell area: 20000 μm2, ferret diameter: 160 μm, perimeter: 600 μm, roundness: 0.76, elongation: 1.45 and compactness: 0.84. During drying, a higher degree of cell shrinkage was observed with cell wall warping and increase in intercellular space. However, no significant cell wall breakage was observed. The overall reduction of cell area, ferret diameter and perimeter were about 60%, 40% and 30%. The cell roundness and elongation showed overall increments of about 5% and the compactness remained unchanged. Throughout the drying cycle, cellular deformations were mainly influenced by the moisture content. During the initial and intermediate stages of drying, cellular deformations were also positively influenced by the drying temperature and the effect was reversed at the final stages of drying which provides clues for case hardening of the material.
Resumo:
Declining fossil fuels reserves, a need for increased energy security and concerns over carbon emissions from fossil fuel use are the global drivers for alternative, renewable, biosources of fuels and chemicals. In the present study the identification of long chain (C29–C33) saturated hydrocarbons from Nicotiana glauca leaves is reported. The occurrence of these hydrocarbons was detected by gas chromatography–mass spectrometry (GC–MS) and identification confirmed by comparison of physico-chemical properties displayed by the authentic standards available. A simple, robust procedure was developed to enable the generation of an extract containing a high percentage of hydrocarbons (6.3% by weight of dried leaf material) higher than previous reports in other higher plant species consequently, it is concluded that N. glauca could be a crop of greater importance than previously recognised for biofuel production. The plant can be grown on marginal lands, negating the need to compete with food crops or farmland, and the hydrocarbon extract can be produced in a non-invasive manner, leaving remaining biomass intact for bioethanol production and the generation of valuable co-products.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Plant based dried food products are popular commodities in global market where much research is focused to improve the products and processing techniques. In this regard, numerical modelling is highly applicable and in this work, a coupled meshfree particle-based two-dimensional (2-D) model was developed to simulate micro-scale deformations of plant cells during drying. Smoothed Particle Hydrodynamics (SPH) was used to model the viscous cell protoplasm (cell fluid) by approximating it to an incompressible Newtonian fluid. The visco-elastic characteristic of the cell wall was approximated to a Neo-Hookean solid material augmented with a viscous term and modelled with a Discrete Element Method (DEM). Compared to a previous work [H. C. P. Karunasena, W. Senadeera, Y. T. Gu and R. J. Brown, Appl. Math. Model., 2014], this study proposes three model improvements: linearly decreasing positive cell turgor pressure during drying, cell wall contraction forces and cell wall drying. The improvements made the model more comparable with experimental findings on dried cell morphology and geometric properties such as cell area, diameter, perimeter, roundness, elongation and compactness. This single cell model could be used as a building block for advanced tissue models which are highly applicable for product and process optimizations in Food Engineering.
Resumo:
Introduction Natural product provenance is important in the food, beverage and pharmaceutical industries, for consumer confidence and with health implications. Raman spectroscopy has powerful molecular fingerprint abilities. Surface Enhanced Raman Spectroscopy’s (SERS) sharp peaks allow distinction between minimally different molecules, so it should be suitable for this purpose. Methods Naturally caffeinated beverages with Guarana extract, coffee and Red Bull energy drink as a synthetic caffeinated beverage for comparison (20 µL ea.) were reacted 1:1 with Gold nanoparticles functionalised with anti-caffeine antibody (ab15221) (10 minutes), air dried and analysed in a micro-Raman instrument. The spectral data was processed using Principle Component Analysis (PCA). Results The PCA showed Guarana sourced caffeine varied significantly from synthetic caffeine (Red Bull) on component 1 (containing 76.4% of the variance in the data). See figure 1. The coffee containing beverages, and in particular Robert Timms (instant coffee) were very similar on component 1, but the barista espresso showed minor variance on component 1. Both coffee sourced caffeine samples varied with red Bull on component 2, (20% of variance). ************************************************************ Figure 1 PCA comparing a naturally caffeinated beverage containing Guarana with coffee. ************************************************************ Discussion PCA is an unsupervised multivariate statistical method that determines patterns within data. Figure 1 shows Caffeine in Guarana is notably different to synthetic caffeine. Other researchers have revealed that caffeine in Guarana plants is complexed with tannins. Naturally sourced/ lightly processed caffeine (Monster Energy, Espresso) are more inherently different than synthetic (Red Bull) /highly processed (Robert Timms) caffeine, in figure 1, which is consistent with this finding and demonstrates this technique’s applicability. Guarana provenance is important because it is still largely hand produced and its demand is escalating with recognition of its benefits. This could be a powerful technique for Guarana provenance, and may extend to other industries where provenance / authentication are required, e.g. the wine or natural pharmaceuticals industries.
Resumo:
The respective requirements of collagen and MT1-MMP in the activation of MMP-2 by primary fibroblast cultures were explored further. Three-dimensional gels enriched in human collagen types I and III or composed of recombinant human type II or III collagen, caused increased MT1-MMP production (mRNA and protein) and induced MMP-2 activation. Only marginal induction was seen with dried monomeric collagen confirming the need for collagen fibrillar organisation for activation. To our surprise, relatively low amounts (as low as 25 μg/ml) of acid soluble type I collagen added to fibroblast cultures also induced potent MMP-2 activation. However, the requirement for collagen fibril formation by the added collagen was indicated by the inhibition seen when the collagen was pre-incubated with a fibril-blocking peptide, and the reduced activation seen with alkali-treated collagen preparations known to have impaired fibrilisation. Pre-treatment of the collagen with sodium periodate also abrogated MMP-2 activation induction. Further evidence of the requirement for collagen fibril formation was provided by the lack of activation when type IV collagen, which does not form collagen fibrils, was added in the cultures. Fibroblasts derived from MT1-MMP-deficient mice were unable to activate MMP-2 in response to either three-dimensional collagen gel or added collagen solutions, compared to their littermate controls. Collectively, these data indicate that the fibrillar structure of collagen and MT1-MMP are essential for the MMP-2 activational response in fibroblasts.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
Drying is a key processing techniques used in food engineering which demands continual developments on advanced analysis techniques in order to optimize the product and the process. In this regard, plant based materials are a frequent subject of interest where microstructural studies can provide a clearer understanding on the fundamental physical mechanisms involved. In this context, considering numerous challenges of using conventional numerical grid-based modelling techniques, a meshfree particle based model was developed to simulate extreme deformations of plant microstructure during drying. The proposed technique is based on a particle based meshfree method: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). A tissue model was developed by aggrading individual cells modelled with SPH-DEM coupled approach by initializing the cells as hexagons and aggregating them to form a tissue. The model also involves a middle lamella resembling real tissues. Using the model, different dried tissue states were simulated with different moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model is capable of simulating plant tissues at lower moisture contents which results in excessive shrinkage and cell wall wrinkling. Model predictions were compared with experimental findings and a fairly good agreement was observed both qualitatively and quantitatively.
Resumo:
Plant food materials have a very high demand in the consumer market and therefore, improved food products and efficient processing techniques are concurrently being researched in food engineering. In this context, numerical modelling and simulation techniques have a very high potential to reveal fundamentals of the underlying mechanisms involved. However, numerical modelling of plant food materials during drying becomes quite challenging, mainly due to the complexity of the multiphase microstructure of the material, which undergoes excessive deformations during drying. In this regard, conventional grid-based modelling techniques have limited applicability due to their inflexible grid-based fundamental limitations. As a result, meshfree methods have recently been developed which offer a more adaptable approach to problem domains of this nature, due to their fundamental grid-free advantages. In this work, a recently developed meshfree based two-dimensional plant tissue model is used for a comparative study of microscale morphological changes of several food materials during drying. The model involves Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) to represent fluid and solid phases of the cellular structure. Simulation are conducted on apple, potato, carrot and grape tissues and the results are qualitatively and quantitatively compared and related with experimental findings obtained from the literature. The study revealed that cellular deformations are highly sensitive to cell dimensions, cell wall physical and mechanical properties, middle lamella properties and turgor pressure. In particular, the meshfree model is well capable of simulating critically dried tissues at lower moisture content and turgor pressure, which lead to cell wall wrinkling. The findings further highlighted the potential applicability of the meshfree approach to model large deformations of the plant tissue microstructure during drying, providing a distinct advantage over the state of the art grid-based approaches.
Resumo:
This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.
Resumo:
This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent and average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas, the shrinkage dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three dimensional temperature and moisture profiles show that even when the surface is dry, inside of the sample may still contain large amount of moisture. Therefore, drying process should be carefully dealt with otherwise microbial spoilage may start from the centre of the ‘dried’ food. A parametric investigation has been conducted after the validation of the model.
Resumo:
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.