968 resultados para Dose-effect relationship


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of amoxicillin serum profiles for successful prophylaxis of experimental endocarditis in rats was assessed. Animals with catheter-induced vegetations were challenged intravenously with large inocula of Streptococcus sanguis and received one of the following amoxicillin dosages: single or multiple bolus injection of 40 mg/kg; 40 mg/kg administered as a continuous infusion over 12 h; or either 9 or 18 mg/kg administered over 12 or 24 h, respectively. The regimen producing a single transient high peak serum level failed to prevent experimental endocarditis; in contrast, a second injection 6 h after the first resulted in successful prophylaxis. Likewise, the three regimens of continuous, relatively low-dose regimens prevented infections. Thus, the most important parameter for successful prophylaxis was the duration of inhibitory concentration of the drug in the serum. The total dose of antibiotic, the peak serum levels, or the area-under-the-curve values were not predictive of successful prophylaxis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cause and effect relationship between arterial hypertension and decline of cognitive function has long been suspected. In middle-age subjects indeed, an abnormally high blood pressure is a risk factor for the long-term development of dementia. Presently, it seems crucial to treat hypertensive patients in order to better protect them against cognitive decline. However, in the elderly patients the risk of mental deterioration may also be enhanced when diastolic pressure becomes too low, for example below 70 mmHg. Further studies are required to better define the antihypertensive drug regimen and target blood pressure which would be optimal for the prevention of cerebral small vessel disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) are the drugs most frequently involved in hypersensitivity drug reactions. Histamine is released in the allergic response to NSAIDs and is responsible for some of the clinical symptoms. The aim of this study is to analyze clinical association of functional polymorphisms in the genes coding for enzymes involved in histamine homeostasis with hypersensitivity response to NSAIDs. We studied a cohort of 442 unrelated Caucasian patients with hypersensitivity to NSAIDs. Patients who experienced three or more episodes with two or more different NSAIDs were included. If this requirement was not met diagnosis was established by challenge. A total of 414 healthy unrelated controls ethnically matched with patients and from the same geographic area were recruited. Analyses of the SNPs rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742 and rs1049793 in the HDC, HNMT and DAO genes were carried out by means of TaqMan assays. The detrimental DAO 16 Met allele (rs10156191), which causes decreased metabolic capacity, is overrepresented among patients with crossed-hypersensitivity to NSAIDs with an OR  = 1.7 (95% CI  = 1.3-2.1; Pc  = 0.0003) with a gene-dose effect (P = 0.0001). The association was replicated in two populations from different geographic areas (Pc  = 0.008 and Pc  = 0.004, respectively). CONCLUSIONS AND IMPLICATIONS: The DAO polymorphism rs10156191 which causes impaired metabolism of circulating histamine is associated with the clinical response in crossed-hypersensitivity to NSAIDs and could be used as a biomarker of response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the last decade, we have been developing new therapeutic strategies for the treatment of renal cancer, based on knowledge derived from molecular biology. We report a case of long-term renal metastatic cancer progression despite therapy with sunitinib and interleukin, which are the most active drugs in renal cancer. Disease stabilization for 58 weeks was achieved upon sequential use of temsirolimus, following the occurrence of disease progression during angiogenic therapy. The patient demonstrated excellent tolerance without marked symptoms for 10 months. Hypothyroidism and mumps-related adverse events were present. The survival time from diagnosis to lung metastasis was 8 years. Thus, this case demonstrates promising therapeutic effects of the sequential use of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin (mTOR) inhibitors during different stages of the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MDRD (Modification of diet in renal disease) equation enables glomerular filtration rate (GFR) estimation from serum creatinine only. Thus, the laboratory can report an estimated GFR (eGFR) with each serum creatinine assessment, increasing therefore the recognition of renal failure. Predictive performance of MDRD equation is better for GFR < 60 ml/min/1,73 m2. A normal or near-normal renal function is often underestimated by this equation. Overall, MDRD provides more reliable estimations of renal function than the Cockcroft-Gault (C-G) formula, but both lack precision. MDRD is not superior to C-G for drug dosing. Being adjusted to 1,73 m2, MDRD eGFR has to be back adjusted to the patient's body surface area for drug dosing. Besides, C-G has the advantage of a greater simplicity and a longer use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recruitment of activated T cells to mucosal surfaces, such as the airway epithelium, is important in host defense and for the development of inflammatory diseases at these sites. We therefore asked whether the CXC chemokines IFN-induced protein of 10 kDa (IP-10), monokine induced by IFN-gamma (Mig), and IFN-inducible T-cell alpha-chemoattractant (I-TAC), which specifically chemoattract activated T cells by signaling through the chemokine receptor CXCR3, were inducible in respiratory epithelial cells. The effects of proinflammatory cytokines, including IFN-gamma (Th1-type cytokine), Th2-type cytokines (IL-4, IL-10, and IL-13), and dexamethasone were studied in normal human bronchial epithelial cells (NHBEC) and in two human respiratory epithelial cell lines, A549 and BEAS-2B. We found that IFN-gamma, but not TNF-alpha or IL-1 beta, strongly induced IP-10, Mig, and I-TAC mRNA accumulation mainly in NHBEC and that TNF-alpha and IL-1 beta synergized with IFN-gamma induction in all three cell types. High levels of IP-10 protein (&gt; 800 ng/ml) were detected in supernatants of IFN-gamma/TNF-alpha-stimulated NHBEC. Neither dexamethasone nor Th2 cytokines modulated IP-10, Mig, or I-TAC expression. Since IFN-gamma is up-regulated in tuberculosis (TB), using in situ hybridization we studied the expression of IP-10 in the airways of TB patients and found that IP-10 mRNA was expressed in the bronchial epithelium. In addition, IP-10-positive cells obtained by bronchoalveolar lavage were significantly increased in TB patients compared with normal controls. These results show that activated bronchial epithelium is an important source of IP-10, Mig, and I-TAC, which may, in pulmonary diseases such as TB (in which IFN-gamma is highly expressed) play an important role in the recruitment of activated T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma concentrations of the enantiomers of fluoxetine (FLX) and norfluoxetine (NFLX) were measured at days 7, 14, and 23 of oral administration of 20 mg of racemic fluoxetine in 11 patients who were comedicated with risperidone. Eight patients were genotyped as being cytochrome P4502D6 extensive metabolizers (EMs) and three as cytochrome P4502D6 poor metabolizers (PMs). No statistically significant differences were calculated between EMs and PMs in the concentrations of (R)-FLX and (R)-NFLX for all days examined (day 23, mean +/- SD for (R)-FLX and (R)-NFLX in EMs, 16 +/- 5 and 29 +/- 20 ng/mL, respectively; in PMs, 16 +/- 1 and 20 +/- 2 ng/mL, respectively). However, concentrations of (S)-FLX and (S)-NFLX were higher and lower, respectively, in PMs as compared with EMs (day 7, p = 0.037 and p = 0.036; day 14, p = 0.014 and p = 0.014; day 23, p = 0.068 and p = 0.038). On day 23, mean (S)-FLX and (S)-NFLX in EMs were (mean +/- SD) 39 +/- 26 and 63 +/- 26 ng/mL, and in PMs they were 88 +/- 7 and 19 +/- 2 ng/mL. This study confirms the results of the single-dose studies showing that CYP2D6 is involved in the demethylation of FLX to NFLX, with a stereoselectivity toward the (S)-enantiomer. The data also clearly show that the CYP2D6 genotype has an important influence on the concentrations of the (S)- but not of the (R)-enantiomer of FLX and NFLX after multiple doses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report in this article for the first time the neuroprotective effects of unconjugated TAT carrier peptide against a mild excitotoxic stimulus both in vitro and in vivo. In view of the widespread use of TAT peptides to deliver neuroprotectants into cells, it is important to know the effects of the carrier itself. Unconjugated TAT carrier protects dissociated cortical neurons against NMDA but not against kainate, suggesting that TAT peptides may interfere with NMDA signaling. Furthermore, a retro-inverso form of the carrier peptide caused a reduction in lesion volume (by about 50%) in a rat neonatal cerebral ischemia model. Thus, even though TAT is designed merely as a carrier, its own pharmacological activity will need to be considered in the analysis of TAT-linked neuroprotectant peptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new ACE inhibitor trandolapril was administered to normal volunteers at daily doses of 0.5, 2, and 8 mg for 10 days. Twenty-one volunteers, aged 21-30 years, were included in the study. To randomly selected groups of seven subjects, each dose was administered in a single-blind fashion. None of the doses induced a consistent fall in blood pressure. Angiotensin-converting enzyme activity (ACE) was measured in vitro using three different synthetic substrates (i.e., Hip-Gly-Gly, Z-Phe-His-Leu, or angiotensin I). Although the degree of ACE inhibition assessed with the three methods varied widely, all methods clearly indicated dose-dependent ACE inhibition. These in vitro results were confirmed by measuring ACE inhibition in vivo using the ratio of plasma angiotensin II (ANG II) to blood angiotensin I (ANG I). The dose-dependent ACE inhibition was paralleled by a dose-dependent rise in active renin and blood angiotensin I levels, most evident on day 10. In contrast, plasma ANG II levels on day 10 were not different whether the volunteers received 0.5 or 8 mg trandolapril. Thus, whereas increasing doses of this new ACE inhibitor progressively enhanced the blockade of ACE activity, this was not reflected by additional reductions of plasma ANG II levels. The progressive enhancement of ACE inhibition seemed to be offset by the accentuation of the compensatory rise in renin and ANG I, which was still partially converted to ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined in vivo the influence of cytochrome P4503A4 (CYP3A4) activity, measured by the 30 min plasma 1'OH-midazolam/midazolam ratio after oral administration of 7.5 mg midazolam, on the methadone steady-state trough plasma concentrations in a group of 32 patients in methadone maintenance treatment. Patients were grouped as receiving 'low' (up to 99 mg/day, n = 10), 'high' (100-199 mg/day, n = 11) and 'very high' (> or = 200 mg/day, n = 11) doses of methadone, and the CYP3A4 metabolic activity was compared between the three groups. (S)-methadone and (R,S)-methadone, but not (R)-methadone, concentrations to dose ratios significantly correlated with the midazolam ratios (r(2) = -0.17, P = 0.018; r(2) = -0.14, P = 0.032; r(2) = -0.10, P = 0.083, respectively), with a 76% higher CYP3A4 activity in the very high-dose group as compared with the low-dose group. Significant differences in the CYP3A4 activity were calculated between the three groups (P = 0.0036), and group-to-group comparisons, using the Bonferroni correction, showed a significant difference between the low-dose and the very high-dose group (P = 0.0039), between the high-dose and the very high-dose group (P = 0.0064), but not between the low-dose and the high-dose group (P = 0.070). The higher CYP3A4 activity measured in patients receiving very high methadone doses could contribute to the need for higher doses in some patients, due to an increased metabolic clearance. This, however, must be confirmed by a prospective study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methadone is widely used for the treatment of opioid dependence. Although in most countries the drug is administered as a racemic mixture of (R)- and (S)- methadone, (R)-methadone accounts for most, if not all, of the opioid effects. Methadone can be detected in the blood 15-45 minutes after oral administration, with peak plasma concentration at 2.5-4 hours. Methadone has a mean bioavailability of around 75% (range 36-100%). Methadone is highly bound to plasma proteins, in particular to alpha(1)-acid glycoprotein. Its mean free fraction is around 13%, with a 4-fold interindividual variation. Its volume of distribution is about 4 L/kg (range 2-13 L/kg). The elimination of methadone is mediated by biotransformation, followed by renal and faecal excretion. Total body clearance is about 0.095 L/min, with wide interindividual variation (range 0.02-2 L/min). Plasma concentrations of methadone decrease in a biexponential manner, with a mean value of around 22 hours (range 5-130 hours) for elimination half-life. For the active (R)-enantiomer, mean values of around 40 hours have been determined. Cytochrome P450 (CYP) 3A4 and to a lesser extent 2D6 are probably the main isoforms involved in methadone metabolism. Rifampicin (rifampin), phenobarbital, phenytoin, carbamazepine, nevirapine, and efavirenz decrease methadone blood concentrations, probably by induction of CYP3A4 activity, which can result in severe withdrawal symptoms. Inhibitors of CYP3A4, such as fluconazole, and of CYP2D6, such as paroxetine, increase methadone blood concentrations. There is an up to 17-fold interindividual variation of methadone blood concentration for a given dosage, and interindividual variability of CYP enzymes accounts for a large part of this variation. Since methadone probably also displays large interindividual variability in its pharmacodynamics, methadone treatment must be individually adapted to each patient. Because of the high morbidity and mortality associated with opioid dependence, it is of major importance that methadone is used at an effective dosage in maintenance treatment: at least 60 mg/day, but typically 80-100 mg/day. Recent studies also show that a subset of patients might benefit from methadone dosages larger than 100 mg/day, many of them because of high clearance. In clinical management, medical evaluation of objective signs and subjective symptoms is sufficient for dosage titration in most patients. However, therapeutic drug monitoring can be useful in particular situations. In the case of non-response trough plasma concentrations of 400 microg/L for (R,S)-methadone or 250 microg/L for (R)-methadone might be used as target values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUME : Objectif: Le glioblastome multiforme (GBM) est la tumeur cérébrale maligne la plus agressive qui conduit au décès de la majorité des patients moins d'une année après le diagnostic. La plupart des agents chimiothérapeutiques actuellement disponibles ne traversent pas la barrière hémato¬encéphalique et ne peuvent par conséquent pas être utilisés pour ce type de tumeur. Le Temozolomide (TMZ) est un nouvel agent alkylant récemment développé pour le traitement des gliomes malins. A ce jour, très peu d'informations sont disponibles sur la pénétration intra-cérébrale de cet agent. Au cours d'une étude pilote de phase II menée auprès de 64 patients atteints de GBM, l'administration précoce de TMZ combinée à une radiothérapie standard (RT) afin d'intervenir au plus tôt dans l'évolution de la maladie, a permis de prolonger la survie de ces patients, résultat qui pu être confirmé par la suite lors de l'étude randomisée de phase III. L'objectif de cette étude a été de déterminer les paramètres pharmacocinétique du TMZ dans le plasma et le liquide céphalo-rachidien (LCR), d'évaluer l'influence de certains facteurs individuels (âge, sexe, surface corporelle, fonction rénale/hépatique, co-médications, RT concomitante) sur ces différents paramètres, et enfin d'explorer la relation existant entre l'exposition au TMZ et certains marqueurs cliniques d'efficacité et de toxicité. Matériel et Méthode: Les concentrations de TMZ ont été mesurées par chromatographie liquide à haute performance (HPLC) dans le plasma et le LCR de 35 patients atteints de GBM nouvellement diagnostiqués (étude pilote) ou de gliomes malins en récidive (étude récidive). L'analyse pharmacocinétique de population a été réalisée à l'aide du programme NONMEM. L'exposition systémique et cérébrale, définie par les AUC (Area Under the time-concentration Curve) dans le plasma et le LCR, a été estimée pour chaque patient et corrélée à la toxicité, la survie ainsi que la survie sans progression tumorale. Résultats: Un modèle à 1 compartiment avec une cinétique d'absorption et de transfert Kplasma -> LCR de ordre a été retenu afin de décrire le profil pharmacocinétique du TMZ. Les valeurs moyennes de population ont été de 10 L/h pour la clairance, de 30.3 L pour le volume de distribution, de 2.1 h pour la 1/2 vie d'élimination, de 5.78 hE-1 pour la constante d'absorption, de 7.2 10E4 hE-1 pour Kplasma->LCR et de 0.76 hE-1 pour KLCR plasma. La surface corporelle a montré une influence significative sur la clairance et le volume de distribution, alors que le sexe influence la clairance uniquement. L'AUC mesurée dans le LCR représente ~20% de celle du plasma et une augmentation de 15% de Kplasma->LCR a été observée lors du traitement concomitant de radiochimiothérapie. Conclusions: Cette étude est la première analyse pharmacocinétique effectuée chez l'homme permettant de quantifier la pénétration intra-cérébrale du TMZ. Le rapport AUC LCR/AUC Plasma a été de 20%. Le degré d'exposition systémique et cérébral au TMZ ne semble pas être un meilleur facteur prédictif de la survie ou de la tolérance au produit que ne l'est la dose cumulée seule. ABSTRACT Purpose: Scarce information is available on the brain penetration of temozolomide (TMZ), although this novel methylating agent is mainly used for the treatment of ma¬lignant brain tumors. The purpose was to assess TNIZ phar¬macokinetics in plasma and cerebrospinal fluid (CSF) along with its inter-individual variability, to characterize covari¬ates and to explore relationships between systemic or cere¬bral drug exposure and clinical outcomes. Experimental Design: TMZ levels were measured by high-performance liquid chromatography in plasma and CSF samples from 35 patients with newly diagnosed or recurrent malignant gliomas. The population pharmacoki¬netic analysis was performed with nonlinear mixed-effect modeling software. Drug exposure, defined by the area un¬der the concentration-time curve (AUC) in plasma and CSF, was estimated for each patient and correlated with toxicity, survival, and progression-free survival. Results: A three-compartment model with first-order absorption and transfer rates between plasma and CSF described the data appropriately. Oral clearance was 10 liter/h; volume of distribution (VD), 30.3 liters; absorption constant rate, 5.8 hE-1; elimination half-time, 2.1 h; transfer rate from plasma to CSF (Kplasma->CSF), 7.2 x 10E-4hE-1 and the backwards rate, 0.76hE-1. Body surface area signifi¬cantly influenced both clearance and VD, and clearance was sex dependent. The AU CSF corresponded to 20% of the AUCplasma. A trend toward an increased K plasma->CSF of 15% was observed in case of concomitant radiochemo-therapy. No significant correlations between AUC in plasma or CSF and toxicity, survival, or progression-free survival were apparent after deduction of dose-effect. Conclusions: This is the first human pharmacokinetic study on TMZ to quantify CSF penetration. The AUC CSF/ AUC plasma ratio was 20%. Systemic or cerebral exposures are not better predictors than the cumulative dose alone for both efficacy and safety.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the role of glucose and lactate as energy substrates to sustain synaptic vesicle cycling. Synaptic vesicle turnover was assessed in a quantitative manner by fluorescence microscopy in primary cultures of mouse cortical neurons. An electrode-equipped perfusion chamber was used to stimulate cells both by electrical field and potassium depolarization during image acquisition. An image analysis procedure was elaborated to select in an unbiased manner synaptic boutons loaded with the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide (FM1-43). Whereas a minority of the sites fully released their dye content following electrical stimulation, others needed subsequent K(+) depolarization to achieve full release. This functional heterogeneity was not significantly altered by the nature of metabolic substrates. Repetitive stimulation sequences of FM1-43 uptake and release were then performed in the absence of any metabolic substrate and showed that the number of active sites dramatically decreased after the first cycle of loading/unloading. The presence of 1 mM glucose or lactate was sufficient to sustain synaptic vesicle cycling under these conditions. Moreover, both substrates were equivalent for recovery of function after a phase of decreased metabolic substrate availability. Thus, lactate appears to be equivalent to glucose for sustaining synaptic vesicle turnover in cultured cortical neurons during activity.