884 resultados para Distal humeral joint
Resumo:
The overall goal of the joint research project is to relate the chemical reactions involved in the formation of organo-aluminium complexes under acid conditions to their toxic effects on the physiology of aquatic organisms. Finally, this research is intended to predict toxic effects arising from acidity and aluminium under varying environmental conditions. This interim report examines the chemical modelling of ion-binding by humic substances where a computer model has been developed and is being tested using field data, and conditions required for the precipitation of aluminium in surface waters.
Resumo:
As one part of an on-going programme concerned with environmental protection as provided for under the terms of a UK/USSR Joint Environmental Protection Agreement signed in London, 21 May 1974, a seminar — ”The elaboration of the scientific basis for monitoring the quality of surface water by hydrobiological indices” was held at Valdai in Russia 12—14 July, 1976. As a continuation of this theme it was agreed that delegations of hydrobiologists from each side should carry out reciprocal visits to carry out comparative field tests on selected systems of biological surveillance in use in the respective countries. In May 1978 a team of British hydrobiologists visited the USSR, under the auspices of the Department of Environment, to carry out joint exercises on the River Dnieper and some tributaries. This paper reports the results of selected methods used by the British side when applied to the conditions found in the River Dnieper.
Resumo:
In accordance with the plan for joint Anglo-Soviet scientific and technical collaboration on environmental problems, the comparative evaluation of systems of hydrobiological analysis of the surface water quality started in 1977 at the Regional Laboratory of the Severn-Trent Water Authority in Nottingham were continued in the spring of 1978. The investigations were carried out under the auspices of the Institute of Hydrobiology of the Academy of Sciences of the Ukrainian SSR. Hydrobiological and hydrochemical samples were collected by Soviet and British specialists from the Kiev reservoir and the rivers Dnieper, Sozh, Desna and Snov. The samples were processed on the expedition ships and in the Laboratory for the Hydrobiology of Small Water Bodies of the Institute of Hydrobiology of the Academy of Sciences of the Ukrainian SSR. The possible approved methods to be adopted were evaluated from the samples using the phytoperiphyton, phytoplankton, zooplankton and zoobenthos against a background of hydrochemical characteristics. The study concludes that weather conditions complicated the work on testing the systems of biological indication of water quality and made it inadvisable to use those methods of comparison which were used when similar work was carried out in Nottingham.
Resumo:
The distal half of the bacteriophage T4 tail fiber interacts with the surface of the bacterium during adsorption. The largest polypeptide in this half fiber is the product of gene 37 (P37). During assembly of the tail fiber, P37 interacts with the product of gene 38 (P38). These two gene products are incompatible with the corresponding gene products from the related phage T2. T2 P37 does not interact with T4 P38 and T2 P38 does not interact with T4 P37. Crosses between T2 and T4 phages mutant in genes 37 and 38 have shown that the carboxyl end of P37 interacts with P38 and with the bacterial surface. In the corresponding region of gene 37 and in gene 38 there is no recombination between T2 and T4. In the rest of gene 37 there are two small regions with relatively high recombination and a region of low recombination.
When T2/T4 heteroduplex DNA molecules are examined in the electron microscope four nonhomologous loops appear in the region of genes 37 and 38. Heteroduplexes between hybrid phages which have part of gene 37 from T4 and part from T2 have roughly located gene 37 mutations in the heteroduplex pattern. For a more precise location of the , mutations a physical map of gene 37 was constructed by determining the molecular weights of amber polypeptide fragments on polyacrylamide gels in the presence of sodium dodecyl sulfate. When the physical and heteroduplex maps are aligned, the regions of low recombination correspond to regions of nonhomology between T2 and T4. Regions with relatively high recombination are homologous.
The molecular weight of T2 P37 is about 13,000 greater than that of T4 P37. Analysis of hybrid phage has shown that this molecular weight difference is all at the carboxyl end of P37.
An antiserum has been prepared which is specific for the distal half fiber of T4. Tests of the ability of gene 37 hybrids to block this antiserum show that there are at least 4 subclasses of antigen specified by different parts of P37.
Observations in the electron microscope of the tailfiber - anti- body complexes formed by the gene 37 hybrids and the specific anti- serum have shown that P37 is oriented linearly in the distal half fiber with its N-terminus near the joint between the two half fibers and its C-terminus near the tip of the fiber. These observations lead to a simple model for the structure of the distal half fiber.
The high recombination in T4 gene 34 was also investigated. A comparison of genetic and physical maps of gene 34 showed that there is a gradient of increasing recombination near one end of the gene.