861 resultados para Diagnostic imaging Digital techniques


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Introducción: La DSA es el método de elección para el seguimiento de pacientes con aneurismas intracraneales embolizados; esta se puede asociar a complicaciones incapacitantes o mortales. La MRA se ha propuesto como método alternativo por menor costo y menos morbi-mortalidad, aunque su desempeño diagnóstico permanece en discusión debido al desarrollo de nuevos protocolos, resonadores más potentes y nuevas aplicaciones de la DSA. Metodología: Exploramos la literatura hasta la actualidad y comparamos el desempeño diagnóstico de la MRA con la DSA para detectar flujo residual posterior a la embolización terapéutica de aneurismas intracraneales. Realizamos una revisión sistemática de la literatura y meta-análisis basados en 34 artículos detectados en la búsqueda que incluyó las bases de datos PubMed, Scopus, ScIELO y BVS. Resultados: La TOF-MRA demostró sensibilidad de 86.8% (84.3%-89.1%) y especificidad de 91.2% (89%-93.1%); la SROC para TOF-MRA demostró un AUC de 0.95. El desempeño de la CE-MRA demostró sensibilidad de 88.1% (84.6%-91.1%) y especificidad de 89.1% (85.7%-91.9%); la SROC presentó una AUC de 0.93. El análisis estratificado por potencia del resonador encontró que la TOF-MRA tiene mejor desempeño con el resonador de 3T, aunque no es estadísticamente significativo. La concordancia interobservador con TOF-MRA y CE-MRA fue moderada a muy buena. Discusión: El desempeño diagnóstico de la MRA en el seguimiento de aneurismas intracraneales embolizados demostró ser bueno, con sensibilidad mayor a 84%, siendo ligeramente mejor con TOF-MRA, sin lograr reemplazar la DSA. Sin embargo, los resultados deben ser evaluados con precaución por la heterogeneidad de los resultados de los estudios incluidos. (Abreviaturas: DSA: Angiografía por Sustracción Digital; MRA: Angiografía por Resonancia Magnética; TOF-MRA: Angiorresonancia por Tiempo de Vuelo; CE-MRA: Angiorresonancia contrastada).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: To evaluate the accuracy of approximal caries detection comparing enhanced and unenhanced Sidexis CCD-based digital image with Ektaspeed Plus and INSIGHT films. Methods: Fifty-two extracted premolars were imaged under identical standardized geometric and exposure conditions. Four observers, using five points confidence scale, rated 104 approximal surfaces for the presence or absence of carious lesions by means of four image modalities: (1) observer enhanced; (2) unenhanced Sidexis displays; (3) E speed films and (4) F speed film. Histologic sections served as validating criterion for the presence and depth of carious lesions. Diagnostic accuracy was measured as the area beneath the ROC curve. Results: Mean ROC (receiver operating characteristic) curve areas for approximal surfaces were 0.865 (E speed), 0.856 (F speed), 0.816 (unenhanced Sidexis) and 0.776 (observer enhanced). There were no significant differences between unenhanced digital Sidexis and films. Observer enhanced Sidexis images exhibited a statistically significant lower diagnostic accuracy than the film images for two of the observers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The impact of plasma technologies is growing both in the academic and in the industrial fields. Nowadays, a great interest is focused in plasma applications in aeronautics and astronautics domains. Plasma actuators based on the Magneto-Hydro-Dynamic (MHD) and Electro- Hydro-Dynamic (EHD) interactions are potentially able to suitably modify the fluid-dynamics characteristics around a flying body without utilizing moving parts. This could lead to the control of an aircraft with negligible response time, more reliability and improvements of the performance. In order to study the aforementioned interactions, a series of experiments and a wide number of diagnostic techniques have been utilized. The EHD interaction, realized by means of a Dielectric Barrier Discharge (DBD) actuator, and its impact on the boundary layer have been evaluated by means of two different experiments. In the first one a three phase multi-electrode flat panel actuator is used. Different external flow velocities (from 1 to 20m/s) and different values of the supplied voltage and frequency have been considered. Moreover a change of the phase sequence has been done to verify the influence of the electric field existing between successive phases. Measurements of the induced speed had shown the effect of the supply voltage and the frequency, and the phase order in the momentum transfer phenomenon. Gains in velocity, inside the boundary layer, of about 5m/s have been obtained. Spectroscopic measurements allowed to determine the rotational and the vibrational temperature of the plasma which lie in the range of 320 ÷ 440°K and of 3000 ÷ 3900°K respectively. A deviation from thermodynamic equilibrium had been found. The second EHD experiment is realized on a single electrode pair DBD actuator driven by nano-pulses superimposed to a DC or an AC bias. This new supply system separates the plasma formation mechanism from the acceleration action on the fluid, leading to an higher degree of the control of the process. Both the voltage and the frequency of the nano-pulses and the amplitude and the waveform of the bias have been varied during the experiment. Plasma jets and vortex behavior had been observed by means of fast Schlieren imaging. This allowed a deeper understanding of the EHD interaction process. A velocity increase in the boundary layer of about 2m/s had been measured. Thrust measurements have been performed by means of a scales and compared with experimental data reported in the literature. For similar voltage amplitudes thrust larger than those of the literature, had been observed. Surface charge measurements led to realize a modified DBD actuator able to obtain similar performances when compared with that of other experiments. However in this case a DC bias replacing the AC bias had been used. MHD interaction experiments had been carried out in a hypersonic wind tunnel in argon with a flow of Mach 6. Before the MHD experiments a thermal, fluid-dynamic and plasma characterization of the hypersonic argon plasma flow have been done. The electron temperature and the electron number density had been determined by means of emission spectroscopy and microwave absorption measurements. A deviation from thermodynamic equilibrium had been observed. The electron number density showed to be frozen at the stagnation region condition in the expansion through the nozzle. MHD experiments have been performed using two axial symmetric test bodies. Similar magnetic configurations were used. Permanent magnets inserted into the test body allowed to generate inside the plasma azimuthal currents around the conical shape of the body. These Faraday currents are responsible of the MHD body force which acts against the flow. The MHD interaction process has been observed by means of fast imaging, pressure and electrical measurements. Images showed bright rings due to the Faraday currents heating and exciting the plasma particles. Pressure measurements showed increases of the pressure in the regions where the MHD interaction is large. The pressure is 10 to 15% larger than when the MHD interaction process is silent. Finally by means of electrostatic probes mounted flush on the test body lateral surface Hall fields of about 500V/m had been measured. These results have been used for the validation of a numerical MHD code.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The radiation burden of an individual patient caused by a radiological examination depends strongly on the technical parameters, such as kV and mAs. As an inquiry among 150 swiss physicians showed, rather different irradiation techniques are used for the same examination. Depending on these irradiation techniques, the doses may vary by almost a factor of ten. These large variations in dose indicate that in some clinics or hospitals the radiographic techniques and the film processing are at fault. This fact has to be accounted for by future efforts of quality assurance in diagnostic radiology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction methods to compensate turbulence effects. While many image reconstruction methods have been proposed, their suitability for use in man-portable embedded systems is uncertain. To be effective, these systems must operate over significant variations in turbulence conditions while subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods have recently been proposed as being well suited for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. Design parameters are selected by parametric evaluation of system performance as factors external to the system are varied. The precise control necessary for such an evaluation is made possible using image sets of turbulence degraded imagery developed using a novel technique for simulating anisoplanatic image formation over long horizontal paths. System performance is statistically evaluated over multiple reconstruction using the Mean Squared Error (MSE) to evaluate reconstruction quality. In addition to more general design parameters, the relative performance the bispectrum and the Knox-Thompson phase recovery methods is also compared. As an outcome of this work it can be concluded that speckle-imaging techniques are robust to the variation in turbulence conditions and user controlled parameters expected when operating during the day over long horizontal paths. Speckle imaging systems that incorporate 15 or more image frames and 4 estimates of the object phase per reconstruction provide up to 45% reduction in MSE and 68% reduction in the deviation. In addition, Knox-Thompson phase recover method is shown to produce images in half the time required by the bispectrum. The quality of images reconstructed using Knox-Thompson and bispectrum methods are also found to be nearly identical. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Magmatic volatiles play a crucial role in volcanism, from magma production at depth to generation of seismic phenomena to control of eruption style. Accordingly, many models of volcano dynamics rely heavily on behavior of such volatiles. Yet measurements of emission rates of volcanic gases have historically been limited, which has restricted model verification to processes on the order of days or longer. UV cameras are a recent advancement in the field of remote sensing of volcanic SO2 emissions. They offer enhanced temporal and spatial resolution over previous measurement techniques, but need development before they can be widely adopted and achieve the promise of integration with other geophysical datasets. Large datasets require a means by which to quickly and efficiently use imagery to calculate emission rates. We present a suite of programs designed to semi-automatically determine emission rates of SO2 from series of UV images. Extraction of high temporal resolution SO2 emission rates via this software facilitates comparison of gas data to geophysical data for the purposes of evaluating models of volcanic activity and has already proven useful at several volcanoes. Integrated UV camera and seismic measurements recorded in January 2009 at Fuego volcano, Guatemala, provide new insight into the system’s shallow conduit processes. High temporal resolution SO2 data reveal patterns of SO2 emission rate relative to explosions and seismic tremor that indicate tremor and degassing share a common source process. Progressive decreases in emission rate appear to represent inhibition of gas loss from magma as a result of rheological stiffening in the upper conduit. Measurements of emission rate from two closely-spaced vents, made possible by the high spatial resolution of the camera, help constrain this model. UV camera measurements at Kilauea volcano, Hawaii, in May of 2010 captured two occurrences of lava filling and draining within the summit vent. Accompanying high lava stands were diminished SO2 emission rates, decreased seismic and infrasonic tremor, minor deflation, and slowed lava lake surface velocity. Incorporation of UV camera data into the multi-parameter dataset gives credence to the likelihood of shallow gas accumulation as the cause of such events.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces. Experimental studies of dynamic gas-liquid interface of micro-scale, two-phase flow were conducted in three phases. Dynamic liquid film thicknesses of segmented, two-phase flow were measured using the RSFC and compared to a classic film thickness deposition model. Flow fields near a steadily moving meniscus were measured using RSFC and particle tracking velocimetry. The RSFC provided high speed imaging near the menisci without distortion caused the gas-liquid interface. Finally, interfacial morphology for internal two-phase flow and droplet evaporation were measured using interferograms produced by the RSFC imaging technique. Each technique can be used independently or simultaneously when.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The combination of scaled analogue experiments, material mechanics, X-ray computed tomography (XRCT) and Digital Volume Correlation techniques (DVC) is a powerful new tool not only to examine the 3 dimensional structure and kinematic evolution of complex deformation structures in scaled analogue experiments, but also to fully quantify their spatial strain distribution and complete strain history. Digital image correlation (DIC) is an important advance in quantitative physical modelling and helps to understand non-linear deformation processes. Optical non-intrusive (DIC) techniques enable the quantification of localised and distributed deformation in analogue experiments based either on images taken through transparent sidewalls (2D DIC) or on surface views (3D DIC). X-ray computed tomography (XRCT) analysis permits the non-destructive visualisation of the internal structure and kinematic evolution of scaled analogue experiments simulating tectonic evolution of complex geological structures. The combination of XRCT sectional image data of analogue experiments with 2D DIC only allows quantification of 2D displacement and strain components in section direction. This completely omits the potential of CT experiments for full 3D strain analysis of complex, non-cylindrical deformation structures. In this study, we apply digital volume correlation (DVC) techniques on XRCT scan data of “solid” analogue experiments to fully quantify the internal displacement and strain in 3 dimensions over time. Our first results indicate that the application of DVC techniques on XRCT volume data can successfully be used to quantify the 3D spatial and temporal strain patterns inside analogue experiments. We demonstrate the potential of combining DVC techniques and XRCT volume imaging for 3D strain analysis of a contractional experiment simulating the development of a non-cylindrical pop-up structure. Furthermore, we discuss various options for optimisation of granular materials, pattern generation, and data acquisition for increased resolution and accuracy of the strain results. Three-dimensional strain analysis of analogue models is of particular interest for geological and seismic interpretations of complex, non-cylindrical geological structures. The volume strain data enable the analysis of the large-scale and small-scale strain history of geological structures.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PURPOSE Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. MATERIALS AND METHODS Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. RESULTS Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. CONCLUSION Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have developed an empirically based simulation system to create images equivalent in SNR and SPR to those that would be acquired with various possible SEDR configurations. This system uses a collection of spot collimated full-field images (SCFFIs) of an anthropomorphic chest phantom, taken at high exposure levels and rescaled in noise and intensity, then digitally collimated and combined to produce the simulated SEDR images. This system allows for the study of design trade-offs between different equalization feedback schemes and scatter rejection geometries in addition to estimating the clinical benefits of SEDR over traditional imaging techniques. Data from this simulation system has demonstrated that SEDR techniques offer potential significant improvements over currently used digital radiography techniques for chest imaging. ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/ junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Aim: To determine the theoretical and clinical minimum image pixel resolution and maximum compression appropriate for anterior eye image storage. Methods: Clinical images of the bulbar conjunctiva, palpebral conjunctiva, and corneal staining were taken at the maximum resolution of Nikon:CoolPix990 (2048 × 1360 pixels), DVC:1312C (1280 × 811), and JAI:CV-S3200 (767 × 569) single chip cameras and the JVC:KYF58 (767 × 569) three chip camera. The images were stored in TIFF format and further copies created with reduced resolution or compressed. The images were then ranked for clarity on a 15 inch monitor (resolution 1280 × 1024) by 20 optometrists and analysed by objective image analysis grading. Theoretical calculation of the resolution necessary to detect the smallest objects of clinical interest was also conducted. Results: Theoretical calculation suggested that the minimum resolution should be ≥579 horizontal pixels at 25 × magnification. Image quality was perceived subjectively as being reduced when the pixel resolution was lower than 767 × 569 (p<0.005) or the image was compressed as a BMP or <50% quality JPEG (p<0.005). Objective image analysis techniques were less susceptible to changes in image quality, particularly when using colour extraction techniques. Conclusion: It is appropriate to store anterior eye images at between 1280 × 811 and 767 × 569 pixel resolution and at up to 1:70 JPEG compression.