852 resultados para Density-lipoprotein Oxidation
Resumo:
Evaluation of Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab 2013. [Epub ahead of print] and Cefalu WT, Leiter LA, Yoon KH, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomized, double-blind, phase 3 non-inferiority trial. Lancet 2013;382:941-50 INTRODUCTION Inhibition of the sodium-glucose cotransporter 2 (SGLT2), to promote the excretion of glucose, is a new paradigm in the treatment of type 2 diabetes. AREAS COVERED Canagliflozin is an SGLT2 inhibitor, which has been the subject of two recent clinical trials, which are evaluated. EXPERT OPINION Studies with canagliflozin, in subjects with type 2 diabetes, have shown that its use is associated with reductions in HbA1c and body weight and small reductions in blood pressure and triglycerides, while increasing high-density lipoprotein cholesterol and low-density lipoprotein cholesterol. As monotherapy in Japanese subjects, or in comparison with glimepiride in CANTATA-SU (CANagliflozin Treatment and Trial Analysis versus SUlphonylurea), canagliflozin causes a low incidence of hypoglycemia, and this is an advantage over glimepiride. However, one of the disadvantages with canagliflozin, which was also highlighted in CANTATA-SU, is that canagliflozin can cause urogenital infections, which are not observed with other antidiabetic drugs. The Federal Drug Administration has recently approved canagliflozin for use in type 2 diabetes, while directing that a clinical outcome safety trial be undertaken. We are concerned that canagliflozin has been approved for use in type 2 diabetes prior to a clinical outcome study of efficacy being undertaken and without the outcome of further safety testing.
Resumo:
Aims and objectives To investigate whether physical activity is a protective factor against metabolic syndrome in middle-aged and older women. Background Socio-demographic and lifestyle behaviour factors contribute to metabolic syndrome. To minimise the risk of metabolic syndrome, several global guidelines recommend increasing physical activity level. However, only limited research has investigated the relationship between physical activity levels and metabolic syndrome in middle-aged and older women after adjusting for socio-demographic and lifestyle behaviour factors. Design Cross-sectional design. Methods A convenience sample of 326 middle-aged and older women was recruited. Metabolic syndrome was confirmed according to the National Cholesterol Education Program, Adult Treatment Panel III guidelines, and physical activity levels were measured by the International Physical Activity Questionnaire. Results The sample had a mean age of 60•9 years, and the prevalence of metabolic syndrome was 43•3%. Postmenopausal women and women with low socioeconomic status (low-education background, without personal income and currently unemployed) had a significantly higher risk of developing metabolic syndrome. After adjusting for significant socio-demographic and lifestyle behaviour factors, the women with moderate or high physical activity levels had a significantly lower (OR = 0•10; OR = 0•11, p < 0•001) risk of metabolic syndrome and a lower risk for each specific component of metabolic syndrome, including elevated fasting plasma glucose (OR = 0•29; OR = 0•26, p = 0•009), elevated blood pressure (OR = 0•18; OR = 0•32, p = 0•029), elevated triglycerides (OR = 0•41; OR = 0•15, p = 0•001), reduced high-density lipoprotein (OR = 0•28; OR = 0•27, p = 0•004) and central obesity (OR = 0•31; OR = 0•22, p = 0•027). Conclusions After adjusting for socio-demographic and lifestyle behaviour factors, physical activity level was a significant protective factor against metabolic syndrome in middle-aged and older women. Higher physical activity levels (moderate or high physical activity level) reduced the risk of metabolic syndrome in middle-aged and older women. Relevance to clinical practice Appropriate strategies should be developed to encourage middle-aged and older women across different socio-demographic backgrounds to engage in moderate or high levels of physical activity to reduce the risk of metabolic syndrome.
Resumo:
Limbal microvascular endothelial cells (L-MVEC) contribute to formation of the corneal-limbal stem cell niche and to neovascularization of diseased and injuries corneas. Nevertheless, despite these important roles in corneal health and disease, few attempts have been made to isolate L-MVEC with the view to studying their biology in vitro. We therefore explored the feasibility of generating primary cultures of L-MVEC from cadaveric human tissue. We commenced our study by evaluating growth conditions (MesenCult-XF system) that have been previously found to be associated with expression of the endothelial cell surface marker thrombomodulin/CD141, in crude cultures established from collagenase-digests of limbal stroma. The potential presence of L-MVEC in these cultures was examined by flow cytometry using a more specific marker for vascular endothelial cells, CD31/PECAM-1. These studies demonstrated that the presence of CD141 in crude cultures established using the MesenCult-XF system is unrelated to L-MVEC. Thus we subsequently explored the use of magnetic assisted cell sorting (MACS) for CD31 as a tool for generating cultures of L-MVEC, in conjunction with more traditional endothelial cell growth conditions. These conditions consisted of gelatin-coated tissue culture plastic and MCDB-131 medium supplemented with fetal bovine serum (10% v/v), D-glucose (10 mg/mL), epidermal growth factor (10 ng/mL), heparin (50 μg/mL), hydrocortisone (1 μg/mL) and basic fibroblast growth factor (10 ng/mL). Our studies revealed that use of endothelial growth conditions are insufficient to generate significant numbers of L-MVEC in primary cultures established from cadaveric corneal stroma. Nevertheless, through use of positive-MACS selection for CD31 we were able to routinely observe L-MVEC in cultures derived from collagenase-digests of limbal stroma. The presence of L-MVEC in these cultures was confirmed by immunostaining for von Willebrand factor (vWF) and by ingestion of acetylated low-density lipoprotein. Moreover, the vWF+ cells formed aligned cell-to-cell ‘trains’ when grown on Geltrex™. The purity of L-MVEC cultures was found to be unrelated to tissue donor age (32 to 80 years) or duration in eye bank corneal preservation medium prior to use (3 to 10 days in Optisol) (using multiple regression test). Optimal purity of L-MVEC cultures was achieved through use of two rounds of positive-MACS selection for CD31 (mean ± s.e.m, 65.0 ± 20.8%; p<0.05). We propose that human L-MVEC cultures generated through these techniques, in conjunction with other cell types, will provide a useful tool for exploring the mechanisms of blood vessel cell growth in vitro.
Resumo:
Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.
Resumo:
The past five years have seen many scientific and biological discoveries made through the experimental design of genome-wide association studies (GWASs). These studies were aimed at detecting variants at genomic loci that are associated with complex traits in the population and, in particular, at detecting associations between common single-nucleotide polymorphisms (SNPs) and common diseases such as heart disease, diabetes, auto-immune diseases, and psychiatric disorders. We start by giving a number of quotes from scientists and journalists about perceived problems with GWASs. We will then briefly give the history of GWASs and focus on the discoveries made through this experimental design, what those discoveries tell us and do not tell us about the genetics and biology of complex traits, and what immediate utility has come out of these studies. Rather than giving an exhaustive review of all reported findings for all diseases and other complex traits, we focus on the results for auto-immune diseases and metabolic diseases. We return to the perceived failure or disappointment about GWASs in the concluding section. © 2012 The American Society of Human Genetics.
Resumo:
Introduction: The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage. Methods: Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions. Results: Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism. Conclusions: sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
Resumo:
Osteoporosis and disorders of bone fragility are highly heritable, but despite much effort the identities of few of the genes involved has been established. Recent developments in genetics such as genome-wide association studies are revolutionizing research in this field, and it is likely that further contributions will be made through application of next-generation sequencing technologies, analysis of copy number variation polymorphisms, and high-throughput mouse mutagenesis programs. This article outlines what we know about osteoporosis genetics to date and the probable future directions of research in this field.
Resumo:
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Resumo:
Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 0·18–0·25; 12·5%; p=9·3 × 10−33), concentrations of interleukin 6 decreased by 0·02 SD (−0·04 to −0·01; −1·7%; p=3·5 × 10−3), and concentrations of C-reactive protein decreased by 0·03 SD (−0·04 to −0·02; −3·4%; p=7·7 × 10−14). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1·15 (1·08–1·22; p=1·8 × 10−6) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1·03 (1·02–1·04; p=3·9 × 10−10). Per-allele odds ratios were 0·97 (0·95–0·99; p=9·9 × 10−4) for rheumatoid arthritis, 0·99 (0·97–1·01; p=0·47) for type 2 diabetes, 1·00 (0·98–1·02; p=0·92) for ischaemic stroke, and 1·08 (1·04–1·12; p=1·8 × 10−5) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1α/β inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Funding UK Medical Research Council, British Heart Foundation, UK National Institute for Health Research, National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council, and European Commission Framework Programme 7.
Resumo:
INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
Resumo:
Bone and joint diseases are major causes of morbidity and mortality worldwide, and their prevalence is increasing as the average population age increases. Most common musculoskeletal diseases show significant heritability, and few have treatments that prevent disease or can induce true treatment-free, disease-free remission. Furthermore, despite valiant efforts of hypothesis-driven research, our understanding of the etiopathogenesis of these conditions is, with few exceptions, at best moderate. Therefore, there has been a long-standing interest in genetics research in musculoskeletal disease as a hypothesis-free method for investigating disease etiopathogenesis. Important contributions have been made through the identification of monogenic causes of disease, but the holy grail of human genetics research has been the identification of the genes responsible for common diseases. The development of genome-wide association (GWA) studies has revolutionized this field, and led to an explosion in the number of genes identified that are definitely involved in musculoskeletal disease pathogenesis. However, this approach will not identify all common disease genes, and although the current progress is exciting and proves the potential of this research discipline, other approaches will be required to identify many of the types of genetic variation likely to be involved.
Resumo:
Ankylosing spondylitis (AS), the prototypic seronegative arthropathy, is known to be highly heritable, with >90% of the risk of developing the disease determined genetically. As with most common heritable diseases, progress in identifying the genes involved using family-based or candidate gene approaches has been slow. The recent development of the genome-wide association study approach has revolutionized genetic studies of such diseases. Early studies in ankylosing spondylitis have produced two major breakthroughs in the identification of genes contributing roughly one third of the population attributable risk of the disease, and pointing directly to a potential therapy. These exciting findings highlight the potential of future more comprehensive genetic studies of determinants of disease risk and clinical manifestations, and are the biggest advance in our understanding of the causation of the disease since the discovery of the association with HLA-B27.
Resumo:
Osteoporosis is a common, increasingly prevalent and potentially debilitating condition of men and women. Genetic factors are major determinants of bone mass and the risk of fracture, but few genes have been definitively demonstrated to be involved. The identification of these factors will provide novel insights into the processes of bone formation and loss and thus the pathogenesis of osteoporosis, enabling the rational development of novel therapies. In this article, we present the extensive genetic and functional data indicating that the LRP5 gene and the Wnt signalling pathway are key players in bone formation and the risk of osteoporosis, and that LRP5 signalling is essential for normal morphology, developmental processes and bone health.
Resumo:
Genetic studies based on cohorts with rare and extreme bone phenotypes have shown that the LRP5 gene is an important genetic modulator of BMD. Using family-based and case-control approaches, this study examines the role of the LRP5 gene in determining normal population variation of BMD and describes significant association and suggestive linkage between LRP5 gene polymorphisms and BMD in >900 individuals with a broad range of BMD. Introduction: Osteoporosis is a common, highly heritable condition determined by complex interactions of genetic and environmental etiologies. Genetic factors alone can account for 50-80% of the interindividual variation in BMD. Mutations in the LRP5 gene on chromosome 11q12-13 have been associated with rare syndromes characterized by extremely low or high BMD, but little is known about the contribution of this gene to the development of osteoporosis and determination of BMD in a normal population. Materials and Methods: To examine the entire spectrum of low to high BMD, 152 osteoporotic probands, their families (597 individuals), and 160 women with elevated BMD (T score > 2.5) were recruited. BMD at the lumbar spine, femoral neck, and hip were measured in each subject using DXA. Results: PAGE sequencing of the LRP5 gene revealed 10 single nucleotide polymorphisms (SNPs), 8 of which had allele frequencies of >5%, in exons 8, 9, 10, 15, and 18 and in introns 6, 7, and 21. Within families, a strong association was observed between an SNP at nucleotide C171346A in intron 21 and total hip BMD (p < 1 × 10-5 in men only, p = 0.0019 in both men and women). This association was also observed in comparisons of osteoporotic probands and unrelated elevated BMD in women (p = 0.03), along with associations with markers in exons 8 (C135242T, p = 0.007) and 9 (C141759T, p = 0.02). Haplotypes composed of two to three of the SNPs G121513A, C135242T, G138351A, and C141759T were strongly associated with BMD when comparing osteoporotic probands and high BMD cases (p < 0.003). An SNP at nucleotide C165215T in exon 18 was linked to BMD at the lumbar spine, femoral neck, and total hip (parametric LOD scores = 2.8, 2.5, and 2.2 and nonparametric LOD scores = 0.3, 1.1, and 2.2, respectively) but was not genetically associated with BMD variation. Conclusion: These results show that common LRP5 polymorphisms contribute to the determination of BMD in the general population.