983 resultados para Density of states
Resumo:
The conductivity of H2SiF6-doped emeraldine polymers is studied as a function of temperature in the range 50 less than or equal to T less than or equal to 180 K. The dopant concentration of the samples varies between 0.1 M and 1.0 M. The temperature dependence of the do electrical conductivity gives evidence for a transport mechanism based on variable-range hopping in three dimensions. Using Mott's formula for the de conductivity, physically meaningful values of the density of states at the Fermi energy, the hopping energy and hopping distance are calculated.
Resumo:
The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structural and electronic properties of SrZrO3 selected surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The relaxation effects for two symmetric and asymmetric terminations are analyzed. The electronic and energy band properties are discussed on the basis of band structure as well density of states. There is a more significant rumpling in the SrO as compared to the ZrO2 terminated surfaces. The calculated indirect gap is 4.856, 4.562, 4.637 eV for bulk, ZrO2 and asymmetric terminations, respectively. The gap becomes direct; 4.536 eV; for SrO termination. The contour in the (110) diagonal plane indicates a partial covalent character between Zr and 0 atoms for the SrO terminated surface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of study was to evaluate fibroblast attachment and cellular morphology on root surfaces chemically conditioned with nicotine or cotinine. A secondary objective was to determine if mechanical scaling and root planning of these chemically conditioned surfaces would alter cellular attachment. Root surface dentin specimens were prepared from uniradicular teeth of non-smoking patients. Specimens were randomly assigned to two experimental groups: no treatment (chemical conditioning only) and scaling and root planning after conditioning (SRPC). The concentrations of the tested substances were in the range of 0-1 mg/mL (nicotine) and 0-1 ?g/mL (cotinine). After a 24-h conditioning period, dentin slices were incubated with continuous lineage of fibroblastic cells from rat (McCoy cells) for another 24 h. Specimens were prepared for SEM analysis and microphotographs. The statistical analysis of the data indicated significant alteration of cellular morphology on fibroblasts that were grown on root surface exposed to nicotine concentrations greater than 1 ? g/mL. This effect of nicotine was not reduced by SRPC. on the other hand, in the SRPC group cellular density was greater. For cotinine-conditioned specimens, the greater concentrations also led to alteration on morphology, and these alterations were observed in the SRPC group as well. Cotinine did not induce significant changes on cellular density. The results indicated that fibroblasts are negatively influenced by nicotine present on the dentin substrate and also that scaling may reduce these effects. Cotinine treatment on root surfaces may alter cell morphology and density but these effects were less severe than that promoted by nicotine, and were not affected by scaling.
Resumo:
We study the phonon density of states of a three dimensional disordered mixed crystal NaCl(x)Br1-x. The phonon structure is obtained by using a cluster method based on a continued fraction expansion of the Green function. The proposed dynamic model includes only short range interactions (first and second neighbors) but supports some qualitative features of the constituents binary alloys.
Resumo:
Density of binary solutions and combinations of sucrose, glucose, fructose, citric acid, malic acid, pectin, and inorganic salts were measured with an oscillating tube density meter in the temperature range from 10degrees to 60degreesC, at varying concentrations. Density can be predicted with accuracy better than 5 x 10(-5) g cm(-3) using predictive equations obtained by fitting the experimental data. Available literature values agreed well with experimental data. Relations for the excess molar volume of these solutions were derived in terms of mole fraction and temperature. A thermodynamic model for the volumetric analysis of multicomponent aqueous solutions containing electrolyte and non-electrolyte compounds was also proposed. These models can be used for prediction of density of liquid food systems, specially fruit juices and beverages, based on composition and temperature, with high accuracy and without elaborate experimental work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural and electronic properties of ZnO (10 (1) over bar0) and (11 (2) over bar0) surfaces were investigated by means of density functional theory applied to periodic calculations at B3LYP level. The stability and relaxation effects for both surfaces were analyzed. The electronic and energy band properties were discussed on the basis of band structure as well as density of states. There is a significant relaxation in the (10 (1) over bar0) as compared to the (11 (2) over bar0) terminated surfaces. The calculated direct gap is 3.09, 2.85, and 3.09 eV for bulk, (10 (1) over bar0), and (11 (2) over bar0) surfaces, respectively. The band structures for both surfaces are very similar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The experimental mesonic density of states ρmeson(m)≃ρbaryon(m) from 0.9 to 1.3 GeV. In this region the ρmeson fits the ρ(m) deduced for it from discrete bag model states. Beyond 1.3 GeV one can expect exotic mesons. If ρmeson is replaced by the baryon density (as suggested by string model studies [D. Kutasov and N. Seiberg, Nucl. Phys. B 358 (1991) 600; P.G.O. Freund and J.L. Rosner, Phys. Rev. Lett. 68 (1992) 765]), agreement with theory is obtained up to 1.7 GeV. Beyond 1.7 GeV exotic baryons may be expected.
Resumo:
In this work we study the electronic structure associated to a disordered distribution of bipolarons in polythiophene. The polymer chain is modelled by a tight-binding Hamiltonian with explicit treatment of electron-phonon coupling and the elastic energy of the sigma framework. The model also includes the electrostatic interaction due to the counterions. The density of states of the disordered system is obtained by the use of the Negative Factor Counting technique. Our results show that ion-induced conformational disorder can account for the closure of the gap and that the states around the Fermi level are extended. © 1993.
Resumo:
The electrical properties of poly p-phenylene sulfide (PPS) samples sandwiched between metallic electrodes are studied as a function of the applied voltage, temperature, time, electrode materials, and sample thickness. Superlinear current-voltage characteristics are observed, which are explained in terms of Schottky effect and space-charge limited currents (SCLC). The conductivity data for variable-range hopping have also been studied, but the calculated values of density of states are approximately one order of magnitude higher than those obtained by SCLC measurements. From thermally stimulated polarization currents we observed a current peak around 80°C that was related with the glass transition temperature of PPS. © 1993.