954 resultados para Degradation, Organic photovoltaics, Scanning probe microscopy
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.
Resumo:
The research work described in this thesis concerns the synthesis, characterization, and applications of two kinds of metal-organic frameworks (MOFs), Copper based MOF (Cu-MOF) and zirconium based MOF (Zr-MOF) functionalized with new linkers. The common thread of this research project can be summarized in three work phases: first, the synthesis and characterization of new organic linkers is described, followed by the presentation of the different optimization conditions for the MOFs synthesis. Second, the new materials were fully characterized using several complementary techniques, such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. Final, to obtain a complete work the possible environmental applications of the new materials were explored.
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.
Resumo:
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50 °C on β-glucan. Under these conditions specific activity was 239.2 ± 9.1 U mg(-1) and the half-life of the enzyme was 84.6 ± 3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2 ± 0.5 mg mL(-1) and the Vmax was 0.41 ± 0.02 µmol min(-1). Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
This in situ study investigated, using scanning electron microscopy, the effect of stimulated saliva on the enamel surface of bovine and human substrates submitted to erosion followed by brushing abrasion immediately or after one hour. During 2 experimental 7-day crossover phases, 9 previously selected volunteers wore intraoral palatal devices, with 12 enamel specimens (6 human and 6 bovine). In the first phase, the volunteers immersed the device for 5 minutes in 150 ml of a cola drink, 4 times a day (8h00, 12h00, 16h00 and 20h00). Immediately after the immersions, no treatment was performed in 4 specimens (ERO), 4 other specimens were immediately brushed (0 min) using a fluoride dentifrice and the device was replaced into the mouth. After 60 min, the other 4 specimens were brushed. In the second phase, the procedures were repeated but, after the immersions, the volunteers stimulated the salivary flow rate by chewing a sugar-free gum for 30 min. Enamel superficial alterations of all specimens were then evaluated using a scanning electron microscope. Enamel prism core dissolution was seen on the surfaces submitted to erosion, while on those submitted to erosion and to abrasion (both at 0 and 60 min) a more homogeneous enamel surface was observed, probably due to the removal of the altered superficial prism layer. For all the other variables - enamel substrate and salivary stimulation -, the microscopic pattern of the enamel specimens was similar.
Resumo:
The present research deals with two mural paintings made in 1947 with the fresco technique by Fulvio Pennacchi in the Catholic Chapel of the Hospital das Clínicas (São Paulo City, Brazil), namely the Virgin Annunciation and the Supper at Emmaus. This study regards the materials and painting techniques used by the artist, based on historical research,on in situ observations and laboratory analytical techniques (stereomicroscopy,scanning electron microscopy with an energy dispersive spectrometer, X-ray diffractometry, electron microprobe, images obtained with UV-light), aiming to improve the methods of characterization of objects of our cultural heritage, and to enhance its preservation accordingly. The results lead to the identification of the plaster components and of distinct layers in the frescoes, besides further information on grain size, impurities and textures, composition of pigments, and features of deterioration, such as efflorescences. The degree of degradation of the murals painting was assessed by this way. Our data suggest that a single layer of plaster was used by Pennacchi, as a common mortar with fine- and medium-grained aggregates. Differences in texture were obtained by adding gypsum to the plaster.
Resumo:
Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.
Resumo:
In this work, the modifications promoted by alkaline hydrolysis and glutaraldehyde (GA) crosslinking on type I collagen found in porcine skin have been studied. Collagen matrices were obtained from the alkaline hydrolysis of porcine skin, with subsequent GA crosslinking in different concentrations and reaction times. The elastin content determination showed that independent of the treatment, elastin was present in the matrices. Results obtained from in vitro trypsin degradation indicated that with the increase of GA concentration and reaction time, the degradation rate decreased. From thermogravimetry and differential scanning calorimetry analysis it can be observed that the collagen in the matrices becomes more resistant to thermal degradation as a consequence of the increasing crosslink degree. Scanning electron microscopy analysis indicated that after the GA crosslinking, collagen fibers become more organized and well-defined. Therefore, the preparations of porcine skin matrices with different degradation rates, which can be used in soft tissue reconstruction, are viable.
Resumo:
In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.
Resumo:
This paper presents the fabrication of a nanothick Co-modified film electrochemically synthesized on layer-by-layer (LbL) structures made with dendrimer polyamidoamine/carbon nanotubes (PAMAM/CNT), and its electrocatalytic properties toward H(2)O(2) reduction. Scanning electron microscopy indicated the formation of a homogeneous, 14 nm thick Co film. The porous nature of the PAMAM/CNT LbL film allowed the electrolyte access to the bottom of the electrode, generating a homogenous Co electrodeposit. In addition, the nanostructure based on Co-modified PAMAM/CNT LbL exhibited high electrocatalytic activity for H(2)O(2) reduction when compared to the Co-free PAMAM/CNT LbL film, which demonstrates the suitability of the system studied for biosensing. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3602200] All rights reserved.
Resumo:
The cuticular surfaces of Cyphophthalmi (Opiliones) were studied in detail, covering a wide range of their taxonomic diversity. Previously unknown structures are described, including a sexually dimorphic row of spines and glandular openings on leg I of Fangensis cavernarum. Scanning electron micrographs of the prosomal paired hairs and the subapical process are provided for the first time. Evidence for the multi-pored nature of the shaft of solenidia as well as the hollowed nature and absence of wall pores of sensilla chaetica are also shown for the first time using scanning electron microscopy. The prosomal paired hairs may constitute a novel autapomorphy for Cyphophthalmi, as they are absent in all studied members of the other species of Opiliones. Finally, the variation in shape of some of the structures examined may be of great taxonomic value.
Resumo:
The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.
Resumo:
High temperature gas nitrided AISI 304L austenitic stainless steel containing 0.55 wt% N in solid solution, was corrosion, erosion and corrosion-erosion tested in a jet-like device, using slurry composed of 3.5% NaCl and quartz particles. Scanning electron microscopy analysis of the damaged surfaces, mass loss measurements and electrochemical test results were used to understand the effect of nitrogen on the degradation mechanisms. Increasing the nitrogen content improved the corrosion, erosion and corrosion-erosion resistance of the AISI 304L austenitic stainless steel. Smoother wear mark contours observed on the nitrided surfaces indicate a positive effect of nitrogen on the reduction of the corrosion-erosion synergism. (C) 2011 Elsevier Ltd. All rights reserved.