995 resultados para Deep waters
Resumo:
The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.
Resumo:
The Pacific Ocean is the largest water body on Earth, and circulation in the Pacific contributed significantly to climate evolution in the latest Cretaceous, the culmination of a period of long-term cooling. Here, we present new high-resolution late Campanian to Maastrichtian benthic and planktic foraminiferal stable isotope data and a neodymium (Nd) isotope record obtained from sedimentary ferromanganese oxide coatings of Ocean Drilling Program Hole 1210B from the tropical Pacific Ocean (Shatsky Rise). These new records resolve 13 million years in the latest Cretaceous, providing insights into changes in surface and bottom water temperatures and source regions of deep to intermediate waters covering the carbon isotope excursions of the Campanian-Maastrichtian Boundary Event (CMBE) and the Mid-Maastrichtian event (MME). Our new benthic foraminiferal d18O and Nd isotope records together with published Nd isotope data show markedly parallel trends across the studied interval over a broad range of bathyal to abyssal water depths interpreted to reflect changes in the intensity of deep-ocean circulation in the tropical Pacific. In particular, we observe a three-million-year-long period of cooler conditions in the early Maastrichtian (72.5 to 69.5 Ma) when a concomitant change toward less radiogenic seawater Nd isotope signatures probably marks a period of enhanced admixture and northward flow of deep waters with Southern Ocean provenance. We suggest this change to have been triggered by intensified formation and convection of deep waters in the high southern latitudes, a process that weakened during the MME (69.5 to 68.5 Ma). The early Maastrichtian cold interval is closely related to the negative and positive carbon isotope trends of the CMBE and MME. The millions-of-years long duration of these carbon cycle perturbations suggests a tectonic forcing of climatic cooling, possibly related to changes in ocean basin geometry and bathymetry.
Resumo:
This dataset consists of global raster maps indicating the habitat suitability for 7 suborders of cold water octocorals (Octocorallia found deeper than 50m). Maps present a relative habitat suitability index ranging from 0 (unsuitable) to 100 (highly suitable). Two maps are provided for each suborder (Alcyoniina, Calcaxonia, Holaxonia, Scleraxonia, Sessiliflorae, Stolonifera, and Subselliflorae). A publicly accessable low resolution map (grid size 10x10 arc-minutes) and a restricted access high resolution map (grid size 30x30 arc-seconds). Maps are geotiff format incorporating LZW compression to reduce file size. Please contact the corresponding author (Chris Yesson) for access to the high resolution data.
Resumo:
Vertical fluxes of 239+240Pu and 241Am and temporal changes in their inventories in the northwestern Mediterranean Sea have been examined through high-resolution water column sampling coupled with direct measurements of the vertical flux of particle-bound transuranics using time-series sediment traps. Water column profiles of both radionuclides showed well-defined sub-surface maxima (2391240Pu between 100-400 m; 241Am at 100-200 m and 800 m), the depths of which are a result of the different biogeochemical scavenging behavior of the two radionuclides. Comparison of deep water column (0-2,000 m) transuranic inventories with those derived from earlier measurements demonstrate that the total 2391240Pu inventory had not substantially changed between 1976-1990 whereas 241Am had decreased by approximately 24%. Enhanced scavenging of 241Am and a resultant, more rapid removal from the water column relative to 239+240Pu was also supported by the observation of elevated Am/Pu activity ratios in sinking particles collected in sediment traps at depth. Direct measurements of the downward flux of particulate 239+240Pu and 241Am compared with transuranic removal rates derived from observed total water column inventory differences over time, show that particles sinking out of deep waters (1,000-2,000 m) could account for 26-72% of the computed total annual 239+240Pu loss and virtually all of the 241Am removal from the water column. Upper water column (0-200 m) residence times based on direct flux measurements ranged from 20-30 yr for 239+240Pu and 5-10 yr for 241Am. The observation that 241Am/239+240Pu activity ratios in unfiltered Mediterranean seawater are six times lower than those in the north Pacific suggests the existence of a specific mechanism for enhanced scavenging and removal of 241Am from the generally oligotrophic waters of the open Mediterranean. It is proposed that atmospheric inputs of aluminosilicate particles transported by Saharan dust events which frequently occur in the Mediterranean region could enhance the geochemical scavenging and resultant removal of 241Am to the sediments.
Resumo:
The dataset contains the revised age models and foraminiferal records obtained for the Last Interglacial period in six marine sediment cores: - the Southern Ocean core MD02-2488 (age model, sea surface temperatures, benthic d18O and d13C for the period 136-108 ka), - the North Atlantic core MD95-2042 (age model, planktic d18O, benthic d18O and d13C for the period 135-110 ka), - the North Atlantic core ODP 980 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the North Atlantic core CH69-K09 (age model, planktic d18O, sea surface temperatures, seawater d18O, benthic d18O and d13C, ice-rafted detritus for the period 135-110 ka), - the Norwegian Sea core MD95-2010 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O, ice-rafted detritus for the period 134-110 ka), - the Labrador Sea core EW9302-JPC2 (age model, percentage of Neogloboquadrina pachyderma sinistral, sea surface temperatures, benthic d18O for the period 134-110 ka).